Version 2.02

PowerPC User Instruction Set Architecture

Book |

Version 2.02

January 28, 2005
Manager:
Joe Wetzel/Poughkeepsie/IBM

Technical Content:

Ed Silha/Austin/IBM Cathy May/Watson/IBM

Junichi Furukawa/Austin/IBM Giles Frazier/Austin/IBM

Brad Frey/Austin/IBM

Version 2.02

The following paragraph does not apply to the United
Kingdom or any country or state where such provisions
are inconsistent with local law.

The specifications in this manual are subject to change
without notice. This manual is provided “AS IS”. Inter-
national Business Machines Corp. makes no warranty
of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability
and fitness for a particular purpose.

International Business Machines Corp. does not war-
rant that the contents of this publication or the accom-
panying source code examples, whether individually or
as one or more groups, will meet your requirements or
that the publication or the accompanying source code
examples are error-free.

This publication could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be incorpo-
rated in new editions of the publication.

Address comments to IBM Corporation, Internal Zip
9630, 11400 Burnett Road, Austin, Texas 78758-3493.
IBM may use or distribute whatever information you
supply in any way it believes appropriate without incur-
ring any obligation to you.

The following terms are trademarks of the International
Business Machines Corporation in the United States
and/or other countries:

IBM PowerPC RISC/System 6000 POWER
POWER2 POWER4 POWER4+ IBM System/370

Notice to U.S. Government Users—Documentation
Related to Restricted Rights—Use, duplication or dis-
closure is subject to restrictions set fourth in GSA ADP
Schedule Contract with IBM Corporation.

© Copyright International Business Machines Corpora-
tion, 1994, 2003. All rights reserved.

i PowerPC User Instruction Set Architecture

Version 2.02

Preface

This document defines the PowerPC User Instruction
Set Architecture. It covers the base instruction set and
related facilities available to the application program-
mer.

Other related documents define the PowerPC Virtual
Environment Architecture, the PowerPC Operating
Environment Architecture, and PowerPC Implementa-
tion Features. Book Il, PowerPC Virtual Environment
Architecture defines the storage model and related
instructions and facilities available to the application
programmer, and the time-keeping facilities available to
the application programmer. Book lll, PowerPC Oper-
ating Environment Architecture defines the system
(privileged) instructions and related facilities. Book 1V,
PowerPC Implementation Features defines the imple-
mentation-dependent aspects of a particular implemen-
tation.

As used in this document, the term “PowerPC Architec-
ture” refers to the instructions and facilities described in
Books I, 1, and Ill. The description of the instantiation of
the PowerPC Architecture in a given implementation
includes also the material in Book 1V for that implemen-
tation.

Note: Change bars indicate changes from Version
2.01.

Preface

Version 2.02

iv PowerPC User Instruction Set Architecture

Version 2.02

Table of Contents

Chapter 1. Introduction.......... 1 2.3.1 Condition Register 18
1.1 Overview. 1 2.3.2 LinkRegister 19
1.2 Computation modes 1 2.3.3 CountRegister....... PR 19
1.3 Instruction Mnemonics and Operands1 2.4 Branch Processo_r Instructions 20
1.4 Compatibility with the POWER Archi- 2.4.1 Branch Instructions R 20

tecture 2 2.4.2 System Call Instruction 26
1.5 Document Conventions 2 2.4.3 Condition Register Logical Instruc-
1.5.1 Definitions and Notation. 2 tions.. ... S R R 27
1.5.2 Reserved Fields and Reserved Val- 2.4.4 Condition Register Field

UES o o oo o 3 Instruction 30
1.5.3 Description of Instruction Operation 4
1.6 Processor OVerview 6 Chapter 3. Fixed-Point Processor .31
1.7 Instructionformats 7 3.1 Fixed-Point Processor Overview. .. 31
171 I-Form 8 3.2 Fixed-Point Processor
172 B-Form...................... 8 Registers.t 31
173 SC-Form 8 3.2.1 General Purpose Registers 31
174 D-Form 8 3.2.2 Fixed-Point Exception Register .. 32
175 DS-FORM 8 3.3 Fixed-Point Processor Instructions . 33
176 X-FORM 9 3.3.1 Fixed-Point Storage Access Instruc-
177 XL-FORM 9 tions. 33
178 XFX-FORM 9 3.3.1.1 Storage Access Exceptions. ... 33
1.79 XFL-FORM 9 3.3.2 Fixed-Point Load Instructions. . .. 33
1710 XS-FORM 9 3.3.3 Fixed-Point Store Instructions . .. 40
1711 XO-FORM 9 3.3.4 Fixed-Point Load and Store with Byte
1712 A-FORM 10 Reversal Instructions. 44
1713 M-FORM 10 3.3.5 Fixed-Point Load and Store Multiple
1.7.14 MD-FORM................. 10 Instructions 46
1715 MDS-FORM................ 10 3.3.6 Fixed-Point Move Assist Instruc-
1.7.16 Instruction Fields 10 tions. 47
1.8 Classes of Instructions 12 3.3.7 Other Fixed-Point Instructions . . . 50
1.8.1 Defined Instruction Class. 12 3.3.8 Fixed-Point Arithmetic Instructions51
1.8.2 lllegal Instruction Class 12 3.3.9 Fixed-Point Compare Instructions 60
1.8.3 Reserved Instruction Class 12 3.3.10 Fixed-Point Trap Instructions . .. 62
1.9 Forms of Defined Instructions. 13 3.3.11 Fixed-Point Logical Instructions . 65
1.9.1 Preferred Instruction Forms. 13 3.3.12 Fixed-Point Rotate and Shift
1.9.2 Invalid Instruction Forms 13 Instructions 71
1.10 Optionality. 14 3.3.12.1 Fixed-Point Rotate Instructions 71
1.11 Exceptions 14 3.3.12.2 Fixed-Point Shift Instructions . 77
1.12 Storage Addressing 14 3.3.13 Move To/From System Register
1.12.1 Storage Operands........... 14 Instructions 81

1.12.2 Effective Address Calculation .. 15

Chapter 4. Floating-Point Processor.
Chapter 2. Branch Processor.... 17 85

2.1 Branch Processor Overview. 17 4.1 Floating-Point Processor Overview. 85
2.2 Instruction Execution Order 17 4.2 Floating-Point Processor Registers. 86
2.3 Branch Processor Registers. 18

Table of Contents v

Version 2.02

4.2.1 Floating-Point Registers 86
4.2.2 Floating-Point Status and Control

Register 87
4.3 Floating-PointData 89
43.1 DataFormat 89
4.3.2 Value Representation 90
4.3.3 SignofResult................ 91
4.3.4 Normalization and

Denormalization 92

4.3.5 Data Handling and Precision. 92
4.3.5.1 Single-Precision Operands92

4.3.5.2 Integer-Valued Operands. 93
436 Rounding.................... 93
4.4 Floating-Point Exceptions 94
4.4.1 Invalid Operation Exception 96
4.4.1.1 Definition 96
4412 Action..................... 97
4.4.2 Zero Divide Exception. 97
4.4.2.1 Definition 97
4422 Action.........., 97
4.4.3 Overflow Exception............ 98
4.4.3.1 Definition 98
4432 Action........... 98
4.4.4 Underflow Exception........... 98
4.4.4.1 Definition 98
4442 Action..................... 98
4.45 InexactException............. 99
4451 Definition 99
4452 Action..................... 99

4.5 Floating-Point Execution Models . .100
4.5.1 Execution Model for IEEE Opera-

tions 100
4.5.2 Execution Model for
Multiply-Add Type Instructions 101

4.6 Floating-Point Processor Instructions .
103

4.6.1 Floating-Point Storage Access
Instructions. 103

4.6.1.1 Storage Access Exceptions . . .103

4.6.2 Floating-Point Load Instructions .103

4.6.3 Floating-Point Store Instructions .106

4.6.4 Floating-Point Move Instructions. 110

4.6.5 Floating-Point Arithmetic Instructions
111

4.6.5.1 Floating-Point Elementary Arith-
metic Instructions 111

4.6.5.2 Floating-Point Multiply-Add Instruc-
tions 113

4.6.6 Floating-Point Rounding and Con-
version Instructions. 115

4.6.7 Floating-Point Compare Instructions.
119

4.6.8 Floating-Point Status and Control
Register Instructions. 120

Chapter 5. Optional Facilities and
Instructions. 123

5.1 Fixed-Point Processor Instructions 124
5.1.1 Move To/From System Register

Instructions 124
5.2 Floating-Point Processor Instructions.
124
5.2.1 Floating-Point Arithmetic Instructions
125
5.2.1.1 Floating-Point Elementary Arith-
metic Instructions 125
5.2.2 Floating-Point Select Instruction 126
5.3 Little-Endian 127
5.3.1 ByteOrdering 127
5.3.2 Structure Mapping Examples. .. 127
5.3.2.1 Big-Endian Mapping........ 127
5.3.2.2 Little-Endian Mapping. 128
5.3.3 PowerPC Byte Ordering 128
5.3.3.1 Controlling PowerPC Byte Order-
] T 128
5.3.3.2 PowerPC Little-Endian Byte Order-
] T 128
5.3.4 PowerPC Data Addressing in Little-
EndianMode. 130
5.3.4.1 Individual Aligned Scalars ... 130
5342 OtherScalars............. 130
5343 PageTable............... 131
5.3.5 PowerPC Instruction Addressing in
Little-Endian Mode 131

5.3.6 PowerPC Cache
Management Instructions in

Little-EndianMode 133
5.3.7 PowerPC I/Oin

Little-Endian Mode 133
5.3.8 Originof Endian. 133

Chapter 6. Optional Facilities and
Instructions that are being Phased
Out......coviiiiii .. 135

6.1 Move To Condition Register from

Appendix A. Suggested Floating-

Point Models 137
A.1 Floating-Point Round to Single-Preci-
sionModel., 137
A.2 Floating-Point Convert to Integer
Model 142
A.3 Floating-Point Convert from Integer
Model 145

Appendix B. Assembler Extended
Mnemonics 151
B.1 Symbols.................... 151

Vi

PowerPC User Instruction Set Architecture

Version 2.02

B.2 Branch Mnemonics 152
B.2.1 BOandBlFields............ 152
B.2.2 Simple Branch Mnemonics 152
B.2.3 Branch Mnemonics Incorporating
Conditions. 153
B.2.4 Branch Prediction 154

B.3 Condition Register Logical Mnemonics
155

B.4 Subtract Mnemonics 155
B.4.1 Subtract Immediate.......... 155
B.4.2 Subtract................... 156
B.5 Compare Mnemonics.......... 156
B.5.1 Doubleword Comparisons. 157
B.5.2 Word Comparisons 157
B.6 Trap Mnemonics. 158
B.7 Rotate and Shift Mnemonics 159
B.7.1 Operations on Doublewords ... 159
B.7.2 OperationsonWords 160
B.8 Move To/From Special Purpose Regis-

ter Mnemonics 162
B.9 Miscellaneous Mnemonics. 162

Appendix C. Programming Examples
167

C.1 Multiple-Precision Shifts. 167
C.2 Floating-Point Conversions 170
C.2.1 Conversion from

Floating-Point Number to

Floating-Point Integer 170
C.2.2 Conversion from

Floating-Point Number to Signed Fixed-

Point Integer Doubleword 170
C.2.3 Conversion from

Floating-Point Number to Unsigned Fixed-

Point Integer Doubleword 170
C.2.4 Conversion from

Floating-Point Number to Signed Fixed-

Point IntegerWord 170
C.2.5 Conversion from

Floating-Point Number to Unsigned Fixed-

Point IntegerWord 171
C.2.6 Conversion from Signed Fixed-Point

Integer Doubleword to Floating-Point Num-

ber.... 171
C.2.7 Conversion from Unsigned Fixed-

Point Integer Doubleword to Floating-Point

Number......... 171
C.2.8 Conversion from Signed Fixed-Point

Integer Word to Floating-Point Number 171
C.2.9 Conversion from Unsigned Fixed-

Point Integer Word to Floating-Point Num-

ber........ 171
C.3 Floating-Point Selection........ 172
C.3.1 Comparisonto Zero 172
C.3.2 Minimum and Maximum 172

C.3.3 Simple if-then-else
Constructions. 172
C34 Notes........... ... 172

Appendix D. Cross-Reference for
Changed POWER Mnemonics ...173

Appendix E. Incompatibilities with

the POWER Architecture........ 175

E.1 New Instructions, Formerly Privileged

Instructions 175
E.2 Newly Privileged

Instructions 175
E.3 Reserved Fields in

Instructions 175
E.4 Reserved Bits in Registers 175
E.5 AlignmentCheck.............. 175
E.6 Condition Register 176
E.7 LKandRcBits 176
E.8 BOField.................... 176
E9 BHField.................... 176

E.10 Branch Conditional to Count Register
176

E.11 SystemCall................. 176
E.12 Fixed-Point Exception
Register (XER) 177
E.13 Update Forms of Storage Access
Instructions 177
E.14 Multiple Register Loads 177
E.15 Load/Store Multiple Instructions . 177
E.16 Move Assist Instructions. 178
E.17 Move To/From SPR 178
E.18 Effects of Exceptions on FPSCR Bits
FRandFl....................... 178
E.19 Store Floating-Point Single Instruc-
tions. 178
E.20 Move FromFPSCR 178
E.21 Zeroing Bytes in the Data Cache 178
E.22 Synchronization 179
E.23 Move To Machine State Register
Instruction 179
E.24 Direct-Store Segments 179
E.25 Segment Register
Manipulation Instructions. 179
E.26 TLB Entry Invalidation. 179
E.27 Alignment Interrupts 179
E.28 Floating-Point Interrupts 179
E.29 Timing Facilities 180
E.29.1 Real-TimeClock 180
E.29.2 Decrementer 180
E.30 Deleted Instructions 181
E.31 Discontinued Opcodes 181
E.32 POWER2 Compatibility. 181
E.32.1 Cross-Reference for Changed
POWER2 Mnemonics 182

Table of Contents vii

Version 2.02

E.32.2 Floating-Point Conversion to Inte-

0 = 182
E.32.3 Floating-Point Interrupts 182
E.324 Trace..................... 182
E.32.5 Deleted Instructions 183
E.32.6 Discontinued Opcodes....... 183

Appendix F. New Instructions ... 185
Appendix G. lllegal Instructions . 187

Appendix H. Reserved Instructions .
189

Appendix . Opcode Maps 191

Appendix J. PowerPC Instruction Set
Sorted by Opcode 203

Appendix K. PowerPC Instruction
Set Sorted by Mnemonic 209

viii PowerPC User Instruction Set Architecture

Version 2.02

Figures
1. Logical processingmode. 6 45. Little-Endian mapping of word ‘w’
2. Power PCuserregisterset................. 7 stored ataddress 5. 131
3. linstruction format. 8 46. PowerPC Little-Endian, word ‘w’
4. Binstructionformat....................... 8 stored at address 5 in storage subsystem . 131
5. SCinstructionformat. 8 47. Assembly language program ‘p’. 131
6. Dinstructionformat. 8 48. Big-Endian mapping of program‘p’ 132
7. DS instruction format. 8 49. Little-Endian mapping of program ‘p’ 132
8. Xinstructionformat. 9 50. PowerPC Little-Endian, program ‘p’
9. XLinstructionformat...................... 9 in storage subsystem 132
10. XFXinstructionformat. 9
11. XFL instructionformat.................... 9
12. XS instructionformat. 9
13. XO instruction format. 9
14. Ainstructionformat. 10
15. Minstructionformat. 10
16. MD instructionformat 10
17. MDS instructionformat 10
18. Condition Register. 18
19. LinkRegister.......... 19
20. CountRegister 19
21. BOfieldencodings 20
22. “at"bitencodings. 20
23. BHfieldencodings 21
24. General Purpose Registers. 31
25. Fixed-Point Exception Register. 32
26. Priority hint levels for or RX,RX,Rx. 65
27. Floating-Point Registers 87
28. Floating-Point Status and Control Register... 87
29. Floating-PointResultFlags............... 89
30. Floating-point single format. 20
31. Floating-point double format.............. 20
32. IEEE floating-pointfields. 90
33. Approximation to real numbers............ 90
34. SelectionofZlandZ2 94
35. |EEE 64-bit execution model............. 100
36. Interpretation of G, R, and X bits. 100
37. Location of the Guard, Round, and

Sticky bits in the IEEE execution model. .. 101
38. Multiply-add 64-bit execution model 101
39. Location of the Guard, Round, and Sticky bits in the

multiply-add execution model 102
40. C structure ‘s’, showing values of elements . 128
41. Big-Endian mapping of structure ‘s’. 128
42. Little-Endian mapping of structure ‘s’ 128
43. PowerPC Little-Endian, structure ‘s’

in storage subsystem................. 129
44. PowerPC Little-Endian, structure ‘s’

as seen by processor. 130

Figures ix

Version 2.02

X PowerPC User Instruction Set Architecture

Version 2.02

Chapter 1. Introduction

1.1 Overview.ccovuvuunn. 1 1.710 XS-FORM................... 9
1.2 Computationmodes............. 1 1.711 XO-FORM................... 9
1.3 Instruction Mnemonics and Operands1 1712 A-FORM................... 10
1.4 Compatibility with the POWER Archi- 1.7.13 M-FORM 10
tecture. 2 1714 MD-FORM 10
1.5 Document Conventions 2 1.715 MDS-FORM................ 10
1.5.1 Definitions and Notation. 2 1.7.16 InstructionFields 10
1.5.2 Reserved Fields and Reserved Val- 1.8 Classes of Instructions 12
UBS o vttt ettt e 3 1.8.1 Defined Instruction Class. 12
1.5.3 Description of Instruction Operation4 1.8.2 lllegal InstructionClass 12
1.6 Processor Overview............. 6 1.8.3 Reserved Instruction Class 12
1.7 Instructionformats 7 1.9 Forms of Defined Instructions. 13
1.71 IF-Form ... 8 1.9.1 Preferred Instruction Forms 13
1.72 B-Form...................... 8 1.9.2 Invalid Instruction Forms 13
173 SC-Form 8 1.10 Optionality................... 14
174 D-Form 8 1.11 Exceptions................... 14
175 DS-FORM 8 1.12 Storage Addressing. 14
176 X-FORM 9 1.12.1 Storage Operands 14
1.77 XL-FORM 9 1.12.2 Effective Address Calculation. . . 15
1.78 XFX-FORM 9
1.79 XFL-FORM 9
1.1 Overview 1.3 Instruction Mnemonics and

This chapter describes computation modes, compatibil-
ity with the POWER Architecture, document conven-
tions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Computation modes

Processors provide two execution environments, 32-bit
and 64-bit. In both of these environments (modes),
instructions that set a 64-bit register affect all 64 bits,
and the value placed into the register is independent of
mode.

Operands

The description of each instruction includes the mne-
monic and a formatted list of operands. Some exam-
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

PowerPC-compliant Assemblers will support the mne-
monics and operand lists exactly as shown. They
should also provide certain extended mnemonics, as
described in Appendix B, “Assembler Extended Mne-
monics” on page 151.

Chapter 1. Introduction 1

Version 2.02

1.4 Compatibility with the
POWER Architecture

The PowerPC Architecture provides binary compatibil-
ity for POWER application programs, except as
described in Appendix E, “Incompatibilities with the
POWER Architecture” on page 175.

Many of the PowerPC instructions are identical to
POWER instructions. For some of these the PowerPC
instruction name and/or mnemonic differs from that in
POWER. To assist readers familiar with the POWER
Architecture, POWER mnemonics are shown with the
individual instruction descriptions when they differ from
the PowerPC mnemonics. Also, Appendix D,
“Cross-Reference for Changed POWER Mnemonics”
on page 173 provides a cross-reference from POWER
mnemonics to PowerPC mnemonics for the instruc-
tions in Books |, I, and IIl.

References to the POWER Architecture include
POWER?2 implementations of the POWER Architecture
unless otherwise stated.

1.5 Document Conventions

1.5.1 Definitions and Notation

The following definitions and notation are used
throughout the PowerPC Architecture documents.

W A program is a sequence of related instructions.

B An application program is a program that uses only
the instructions and resources described in Books
land Il.

B Quadwords are 128 bhits, doublewords are 64 bits,
words are 32 bits, halfwords are 16 bits, and bytes
are 8 hits.

m All numbers are decimal unless specified in some
special way.

- Obnnnn means a number expressed in binary
format.

- Oxnnnn means a number expressed in hexa-
decimal format.

Underscores may be used between digits.
RT, RA, R1, ... refer to General Purpose Registers.

FRT, FRA, FR1, ...
ters.

refer to Floating-Point Regis-

B (x) means the contents of register x, where x is the
name of an instruction field. For example, (RA)
means the contents of register RA, and (FRA)
means the contents of register FRA, where RA and
FRA are instruction fields. Names such as LR and
CTR denote registers, not fields, so parentheses

are not used with them. Parentheses are also
omitted when register x is the register into which
the result of an operation is placed.

(RA]0) means the contents of register RA if the RA
field has the value 1-31, or the value O if the RA
field is O.

Bits in registers, instructions, and fields are speci-
fied as follows.

- Bits are numbered left to right, starting with bit
0.

- Ranges of bits are specified by two numbers
separated by a colon (). The range p:q con-
sists of bits p through q.

Xp means bit p of register/field X.
Xp:q Means bits p through g of register/field X.
Xp q ... means bits p, g, ... of register/field X.

—1(RA) means the one’s complement of the con-
tents of register RA.

Field i refers to bits 4 Xi through 4 X i+3 of a regis-
ter.

A period (.) as the last character of an instruction
mnemonic means that the instruction records sta-
tus information in certain fields of the Condition
Register as a side effect of execution, as described
in Chapter 2 through Chapter 4.

The symbol || is used to describe the concatena-
tion of two values. For example, 010 || 111 is the
same as 010111.

x" means x raised to the nt" power.

Mx means the replication of x, n times (i.e., x con-
catenated to itself n-1 times). (n)0 and (n)1 are
special cases:

- "0 means a field of n bits with each bit equal to
0. Thus 20 is equivalent to 0b00000.

- ™ means a field of n bits with each bit equal to
1. Thus °1 is equivalent to Ob11111.

Floating-point single format or simply single format
is used to refer to the representation of a sin-
gle-precision binary floating-point value in a regis-
ter or storage.

Floating-point double format or simply double for-
mat is used to refer to the representation of a dou-
ble-precision binary floating-point value in a
register or storage.

Positive means greater than zero.

Negative means less than zero.

W A system library program is a component of the

system software that can be called by an applica-
tion program using a Branch instruction.

2 PowerPC User Instruction Set Architecture

Version 2.02

B A system service program is a component of the
system software that can be called by an applica-
tion program using a System Call instruction.

B The system trap handler is a component of the
system software that receives control when the
conditions specified in a Trap instruction are satis-
fied.

B The system error handler is a component of the
system software that receives control when an
error occurs. The system error handler includes a
component for each of the various kinds of error.
These error-specific components are referred to as
the system alignment error handler, the system
data storage error handler, etc.

B Each bit and field in instructions, and in status and
control registers (e.g., XER, FPSCR) and Special
Purpose Registers, is either defined or reserved.

| / /l,/ll, .. denotes a reserved field in an instruc-
tion.

B Latency refers to the interval from the time an
instruction begins execution until it produces a
result that is available for use by a subsequent
instruction.

B Unavailable refers to a resource that cannot be
used by the program. For example, storage is
unavailable if access to it is denied. See Book I,
PowerPC Operating Environment Architecture.

B A value that is specified as being undefined may
vary between implementations, and between dif-
ferent executions on the same implementation,
and similarly for register contents, storage con-
tents, etc., that are specified as being undefined.

B The results of executing a given instruction are
said to be boundedly undefined if they could have
been achieved by executing an arbitrary finite
sequence of instructions (none of which yields
boundedly undefined results) in the state the pro-
cessor was in before executing the given instruc-
tion. Boundedly undefined results may include the
presentation of inconsistent state to the system
error handler as described in the section entitled
“Concurrent Modification and Execution of Instruc-
tions” in Book Il. Boundedly undefined results for a
given instruction may vary between implementa-
tions, and between different executions on the
same implementation.

B The sequential execution model is the model of
program execution described in Section 2.2,
“Instruction Execution Order” on page 17.

1.5.2 Reserved Fields and
Reserved Values

Reserved fields in instructions are ignored by the pro-
cessor.

In some cases a defined field of an instruction has cer-
tain values that are reserved. This includes cases in
which the field is shown in the instruction layout as con-
taining a particular value; in such cases all other values
of the field are reserved. In general, if an instruction is
coded such that a defined field contains a reserved
value the instruction form is invalid; see Section 1.9.2
on page 13. The only exception to the preceding rule is
that it does not apply to portions of defined fields that
are specified, in the instruction description, as being
treated as a reserved field. References elsewhere in
Books | - Il to a defined field that has reserved values
assume the field does not contain a reserved value,
unless otherwise stated or obvious from context.

To maximize compatibility with future architecture
extensions, software must ensure that reserved fields
in instructions contain zero and that defined fields of
instructions do not contain reserved values.

The handling of reserved bits in System Registers (e.g.,
XER, FPSCR) is implementation-dependent. Unless
otherwise stated, software is permitted to write any
value to such a bit. A subsequent reading of the bit
returns O if the value last written to the bit was 0 and
returns an undefined value (0 or 1) otherwise.

Assembler Note

Assemblers should report uses of reserved values
of defined fields of instructions as errors.

Chapter 1. Introduction 3

Version 2.02

— Programming Note

It is the responsibility of software to preserve bits
that are now reserved in System Registers,
because they may be assigned a meaning in some
future version of the architecture.

In order to accomplish this preservation in imple-
mentation-independent fashion, software should do
the following.

B [nitialize each such register supplying zeros for
all reserved bits.

B Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the reg-
ister.

The XER and FPSCR are partial exceptions to this
recommendation. Software can alter the status bits
in these registers, preserving the reserved bits, by
executing instructions that have the side effect of
altering the status bits. Similarly, software can alter
any defined bit in the FPSCR by executing a Float-
ing-Point Status and Control Register instruction.
Using such instructions is likely to yield better per-
formance than using the method described in the
second item above.

1.5.3 Description of Instruction
Operation

A formal description is given of the operation of each
instruction. In addition, the operation of most instruc-
tions is described by a semiformal language at the reg-
ister transfer level (RTL). This RTL uses the notation
given below, in addition to the definitions and notation
described in Section 1.5.1, “Definitions and Notation”
on page 2. Some of this notation is also used in the for-
mal descriptions of instructions. RTL notation not sum-
marized here should be self-explanatory.

The RTL descriptions cover the normal execution of the
instruction, except that “standard” setting of the Condi-
tion Register, Fixed-Point Exception Register, and
Floating-Point Status and Control Register are not
shown. (“Non-standard” setting of these registers,
such as the setting of the Condition Register by the
Compare instructions, is shown.) The RTL descriptions
do not cover cases in which the system error handler is
invoked, or for which the results are boundedly unde-
fined.

The RTL descriptions specify the architectural transfor-
mation performed by the execution of an instruction.
They do not imply any particular implementation.

Notation Meaning

« Assignment

iea Assignment of an instruction effective
address. In 32-bit mode the high-order 32
bits of the 64-bit target address are set to

T

0.

- NOT logical operator

+ Two’s complement addition

- Two’s complement subtraction, unary
minus

X Multiplication

+ Division (yielding quotient)

\ Square root

=+ Equals, Not Equals relations

<, L, >, > Signed comparison relations

<y su Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

@, = Exclusive OR, Equivalence logical opera-

tors ((a=b) = (a®—b))

ABS(x) Absolute value of x

CEIL(x) Least integer = x

DOUBLE(x) Result of converting x from floating-point

single format to floating-point double for-

mat, using the model shown on page 103

Result of extending x on the left with sign

bits

FLOOR(x) Greatest integer <X

GPR(x) General Purpose Register x

MASK(x, y) Mask having 1s in positions x through y
(wrapping if x > y) and 0s elsewhere

MEM(x, y) Contents of y bytes of storage starting at
address x. In 32-bit mode the high-order
32 bits of the 64-bit value x are ignored.

ROTLg4(X, ¥)

Result of rotating the 64-bit value x left y
positions

ROTLg(x, ¥)

Result of rotating the 64-bit value x||x left y
positions, where x is 32 bits long

SINGLE(x) Result of converting x from floating-point
double format to floating-point single for-
mat, using the model shown on page 106

SPREG(x) Special Purpose Register x

TRAP Invoke the system trap handler

characterization
Reference to the setting of status bits, in a
standard way that is explained in the text

undefined An undefined value.

CIA Current Instruction Address, which is the
64-bit address of the instruction being
described by a sequence of RTL. Used by
relative branches to set the Next Instruc-
tion Address (NIA), and by Branch instruc-
tions with LK=1 to set the Link Register. In
32-bit mode the high-order 32 bits of CIA
are always set to 0. Does not correspond
to any architected register.

NIA Next Instruction Address, which is the
64-bit address of the next instruction to be
executed. For a successful branch, the

EXTS(X)

4 PowerPC User Instruction Set Architecture

gfrazier
Line

gfrazier
Rectangle

gfrazier
Highlight

gfrazier
Highlight

Version 2.02

next instruction address is the branch tar-
get address: in RTL, this is indicated by
assigning a value to NIA. For other
instructions that cause non-sequential
instruction fetching (see Book Ill, Pow-
erPC Operating Environment Architec-
ture), the RTL is similar. For instructions
that do not branch, and do not otherwise
cause instruction fetching to be
non-sequential, the next instruction
address is CIA+4. In 32-bit mode the
high-order 32 bits of NIA are always set to
0. Does not correspond to any architected
register.

if... then... else...

do

leave

for

Conditional execution, indenting shows
range; else is optional.

Do loop, indenting shows range. “To” and/
or “by” clauses specify incrementing an
iteration variable, and a “while” clause
gives termination conditions.

Leave innermost do loop, or do loop
described in leave statement.

For loop, indenting shows range. Clause
after “for” specifies the entities for which to
execute the body of the loop.

The precedence rules for RTL operators are summa-
rized in Table 1. Operators higher in the table are
applied before those lower in the table. Operators at
the same level in the table associate from left to right,
from right to left, or not at all, as shown. (For example,
- associates from left to right, so a-b-c = (a-b)-c.)
Parentheses are used to override the evaluation order
implied by the table or to increase clarity; parenthe-
sized expressions are evaluated before serving as

operands.

Table 1: Operator precedence

Operators Associativity
subscript, function evaluation left to right
pre-superscript (replication), right to left
post-superscript (exponentiation)

unary -, =1 right to left
X, + left to right
+, -, left to right
|l left to right
=% << >, 2 >0 2 left to right
& @, = left to right
| left to right
: (range) none

< none

Chapter 1. Introduction

5

Version 2.02

1.6 Processor Overview

The processor implements the instruction set, the stor-
age model, and other facilities defined in this docu-
ment. Instructions that the processor can execute fall
into three classes:

W branch instructions
B fixed-point instructions
m floating-point instructions

Branch instructions are described in Section 2.4,
“Branch Processor Instructions” on page 20.
Fixed-point instructions are described in Section 3.3,
“Fixed-Point Processor Instructions” on page 33. Float-
ing-point instructions are described in Section 4.6,
“Floating-Point Processor Instructions” on page 103.

Fixed-point instructions operate on byte, halfword,
word, and doubleword operands. Floating-point
instructions operate on single-precision and dou-
ble-precision floating-point operands. The PowerPC
Architecture uses instructions that are four bytes long
and word-aligned. It provides for byte, halfword, word,
and doubleword operand fetches and stores between
storage and a set of 32 General Purpose Registers
(GPRs). It also provides for word and doubleword
operand fetches and stores between storage and a set
of 32 Floating-Point Registers (FPRSs).

Signed integers are represented in two’s complement
form.

There are no computational instructions that modify
storage. To use a storage operand in a computation
and then modify the same or another storage location,
the contents of the storage operand must be loaded
into a register, modified, and then stored back to the
target location. Figure 1 is a logical representation of
instruction processing. Figure 2 shows the registers of
the PowerPC User Instruction Set Architecture.

Branch
» processing

Fixed-Point and
Floating-Point

Instructions
Fixed-Pt Float-Pt
Processing Processing

Data to/from
Storage

Storage

Instructions
from Storage

Figure 1. Logical processing mode

6 PowerPC User Instruction Set Architecture

Version 2.02

CR
0 31
“Condition Register” on page 18

XER
0 63
“Fixed-Point Exception Register” on page 32

LR FPR O
0 63 FPR 1
“Link Register” on page 19
CTR FPR 30
0 63 FPR 31
“Count Register” on page 19 0 63

“Floating-Point Registers” on page 87

GPRO
GPR1 FPSCR
0 31
“Floating-Point Status and Control Register” on
page 87
GPR 30
GPR 31
0 63

“General Purpose Registers” on page 31

Figure 2. Power PC user register set

1.7 Instruction formats

All instructions are four bytes long and word-aligned.
Thus, whenever instruction addresses are presented to
the processor (as in Branch instructions) the low-order
two bits are ignored. Similarly, whenever the processor
develops an instruction address the low-order two bits
are zero.

Bits 0:5 always specify the opcode (OPCD, below).
Many instructions also have an extended opcode (XO,
below). The remaining bits of the instruction contain
one or more fields as shown below for the different
instruction formats.

The format diagrams given below show horizontally all
valid combinations of instruction fields. The diagrams
include instruction fields that are used only by instruc-
tions defined in Book Il, PowerPC Virtual Environment
Architecture, or in Book Ill, PowerPC Operating Envi-
ronment Architecture.

Split Field Notation

In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con-
tiguous sequence of bits that are used in permuted
order. Such a field is called a split field. In the format
diagrams given below and in the individual instruction
layouts, the name of a split field is shown in small let-
ters, once for each of the contiguous sequences. Inthe
RTL description of an instruction having a split field,
and in certain other places where individual bits of a
split field are identified, the name of the field in small
letters represents the concatenation of the sequences
from left to right. In all other places, the name of the
field is capitalized and represents the concatenation of
the sequences in some order, which need not be left to
right, as described for each affected instruction.

Chapter 1. Introduction 7

Version 2.02

1.7.1 I-Form 1.7.4 D-Form
0 6 30 31 0 6 11 16 31
| OPCD | LI |AA|LK] OPCD | RT RA D
Figure 3. linstruction format OPCD RT RA Sl
OPCD RS RA D
1.7.2 B-Form OPCD | RS | RA Ul
OPCD |BF|/|L| RA Sl
0 6 1 16 30 31
|opcD | BO | BI | BD |AA[LK] OPCD |BF|/]L] RA Ul
OPCD TO RA Sl
Figure 4. B instruction format OPCD ERT RA D
OPCD FRS RA D
1.7.3 SC-Form Figure 6. D instruction format
0 6 11 16 20 27 30 31
LopcD | m | m | i | LEV | /I [1]/]
1.7.5 DS-FORM
Figure 5. SCinstruction format 0 6 1 16 30 31
OPCD RT RA DS X0
OPCD RS RA DS X0
Figure 7. DS instruction format

8 PowerPC User Instruction Set Architecture

Version 2.02

1.7.6 X-FORM 1.7.7 XL-FORM
0 6 11 31 0 6 11 16 21 31
OPCD RT RA RB X0 / OPCD BT BA BB X0 /
OPCD RT RA NB X0 / OPCD BO Bl " |BH X0 LK
OPCD | RT |/[SR | 1 X0 / OPCD | BF |/ |BFA| /| 1l X0 /
OPCD RT i RB X0 / OPCD i i " X0 /
OPCD RT m m X0 / Figure 9. XL instruction format
OPCD RS RA RB X0 Rc
OPCD RS RA RB X0 1 178 XFX'FORM
OPCD RS RA RB X0 / o . u ,1 .
OPCD RS RA NB X0 / OPCD RT spr) /
OPCD RS RA SH X0 Rc OPCD RT tor) /
OPCD RS RA i X0 Rc OPCD RT 10 I %O /
OPCD | RS |/[SR | I X0 / e T /T I BM I o ;
OPCD RS I RB X0 / OPCD RS |0 FXM / X0 /
OPCD RS i i X0 / OPCD RS N EXM]) /
OPCD | RS | /Il || 1 X0 / opco T Rs sor) ;
opcD |BF[/[L] RA | RB X0 /
OPCD | BF |/ | FRA FRB XO / Figure 10. XFX instruction format
OPCD |BF |/ |BFA| /| 1l X0 /
opcd |BF| /| m | u [/] xo |rd 1.7.9 XFL-FORM
OPCD | BF | // " " XO / 0 67 15 16 21 31
OPCD /| TH RA RB XO / | OPCD |/| FLM |/| FRB | XO |Rc|
OPCD | /Il |L| RA RB X0 / Figure 11. XFL instruction format
OPCD /i RB X0 /
OPCD |/ |L| 1l T XO / 1.7.10 XS-FORM
OPCD TO RA RB X0 / 0 6 1 16 ”1 30 31
OPCD | FRT | RA RB X0 / [oPcD [RS | RA | sh | XO [sh[Rd]
OPCD | FRT 1! FRB X0 Rc : _ _
OPCD FRT T T) RC Figure 12. XS instruction format
OPCD FRS RA RB X0 /
opCD | BT | W | /i xo [rq 1.7.11 XO-FORM
OPCD " RA RB X0 / 0 6 1 16 21 22 31
OPCD I I RB X0 / OPCD RT RA RB |OE X0 Rc
OPCD | /Il T T XO / OPCD | RT RA RB |/]| XO |Rc
) : : OPCD | RT RA i |oE[XO |Rc
Figure 8. Xinstruction format

Figure 13. XO instruction format

Chapter 1. Introduction 9

Version 2.02

1.7.12 A-FORM

0 6 1 16 21 26 31
OPCD | FRT FRA | FRB | FRC | XO |Rc
OPCD | FRT FRA | FRB i XO |Rc
OPCD | FRT FRA 1 FRC | XO |Rc
OPCD | FRT 1 FRB 7 XO |Rc

Figure 14. A instruction format

1.7.13 M-FORM

0 6 1 16 21 26 31
OPCD RS RA RB MB ME [Rc
OPCD RS RA SH MB ME |[Rc

Figure 15. M instruction format

1.7.14 MD-FORM

0 6 1 16 21 27 30 31
OPCD RS RA sh mb |XO|sh|Rc
OPCD RS RA sh me |XO|sh|Rc

Figure 16. MD instruction format

1.7.15 MDS-FORM

0 6 1 16 21 27 31
OPCD RS RA RB mb XO |Rc
OPCD RS RA RB me XO |Rc

Figure 17. MDS instruction format

1.7.16 Instruction Fields
AA (30)
Absolute Address bit.
0 The immediate field represents an

address relative to the current instruction
address. For I-form branches the effec-
tive address of the branch target is the
sum of the LI field sign-extended to 64 bits
and the address of the branch instruc-
tion. For B-form branches the effective
address of the branch target is the sum of
the BD field sign-extended to 64 bits and
the address of the branch instruction.

1 The immediate field represents an abso-
lute address. For I-form branches the
effective address of the branch target is
the LI field sign-extended to 64 bits. For
B-form branches the effective address of

the branch target is the BD field
sign-extended to 64 bits.
BA (11:15)
Field used to specify a bit in the CR to be used as
a source.
BB (16:20)
Field used to specify a bit in the CR to be used as
a source.
BD (16:29)

Immediate field used to specify a 14-bit signed
two's complement branch displacement which is
concatenated on the right with 0b0O0 and
sign-extended to 64 bits.

BF (6:8)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a target.

BFA (11:13)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a source.

BH (19:20)
Field used to specify a hint in the Branch Condi-
tional to Link Register and Branch Conditional to
Count Register instructions. The encoding is
described in Section 2.4.1, “Branch Instructions”
on page 20.

Bl (11:15)
Field used to specify a bit in the CR to be tested by
a Branch Conditional instruction.

BO (6:10)
Field used to specify options for the Branch Condi-
tional instructions. The encoding is described in
Section 2.4.1, “Branch Instructions” on page 20.

10 PowerPC User Instruction Set Architecture

Version 2.02

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR to be used as a target.

D (16:31)
Immediate field used to specify a 16-bit signed
two’s complement integer which is sign-extended
to 64 bits.

DS (16:29)
Immediate field used to specify a 14-bit signed
two's complement integer which is concatenated
on the right with Ob00 and sign-extended to 64
bits.

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfsf instruction.

FRA (11:15)
Field used to specify an FPR to be used as a
source.

FRB (16:20)
Field used to specify an FPR to be used as a
source.

FRC (21:25)
Field used to specify an FPR to be used as a
source.

FRS (6:10)
Field used to specify an FPR to be used as a
source.

FRT (6:10)
Field used to specify an FPR to be used as a tar-
get.

FXM (12:19)
Field mask used to identify the CR fields that are to
be written by the mtcrf and mtocrf instructions, or
read by the mfocrf instruction.

L (10 or 15)
Field used to specify whether a fixed-point Com-
pare instruction is to compare 64-bit numbers or
32-bit numbers.

Field used by the optional version of the Data
Cache Block Flush instruction (see Book II, Pow-
erPC Virtual Environment Architecture).

Field used by the Move To Machine State Register
and TLB Invalidate Entry instructions (see Book I,
PowerPC Operating Environment Architecture).

L (9:10)
Field used by the Synchronize instruction (see
Book Il, PowerPC Virtual Environment Architec-
ture).

LEV (20:26)
Field used by the System Call instruction.

LI (6:29)
Immediate field used to specify a 24-bit signed
two’'s complement integer which is concatenated
on the right with Ob00 and sign-extended to 64
bits.

LK (31)
LINK bit.
0 Do not set the Link Register.
1 Setthe Link Register. The address of the
instruction following the Branch instruction
is placed into the Link Register.

MB (21:25) and ME (26:30)
Fields used in M-form instructions to specify a
64-bit mask consisting of 1-bits from bit MB+32
through bit ME+32 inclusive and 0-bits elsewhere,
as described in Section 3.3.12, “Fixed-Point
Rotate and Shift Instructions” on page 71.

MB (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.12, “Fixed-Point Rotate
and Shift Instructions” on page 71.

ME (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.12, “Fixed-Point Rotate
and Shift Instructions” on page 71.

NB (16:20)
Field used to specify the number of bytes to move
in an immediate Move Assist instruction.

OPCD (0:5)
Primary opcode field.

OE (21)
Field used by XO-form instructions to enable set-
ting OV and SO in the XER.

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

RB (16:20)
Field used to specify a GPR to be used as a
source.

Rc (31)
RECORD hit.
0 Do not alter the Condition Register.
1 Set Condition Register Field 0 or Field 1
as described in Section 2.3.1, “Condition
Register” on page 18.

RS (6:10)
Field used to specify a GPR to be used as a
source.

RT (6:10)

Chapter 1. Introduction 11

Version 2.02

Field used to specify a GPR to be used as a target.

SH (16:20, or 16:20 and 30)
Field used to specify a shift amount.

Sl1(16:31)
Immediate field used to specify a 16-bit signed
integer.

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions.

SR (12:15)
Field used by the Segment Register Manipulation
instructions (see Book lll, PowerPC Operating

Environment Architecture).

TBR (11:20)
Field used by the Move From Time Base instruc-
tion (see Book IlI, PowerPC Virtual Environment
Architecture).

TH (7:10)
Field used by the optional data stream variant of
the dcbt instruction (see Book I, PowerPC Virtual
Environment Architecture).

TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in Section 3.3.10,
“Fixed-Point Trap Instructions” on page 62.

U (16:19)
Immediate field used as the data to be placed into
a field in the FPSCR.

Ul (16:31)
Immediate field used to specify a 16-bit unsigned
integer.

XO (21:29, 21:30, 22:30, 26:30, 27:29, 27:30, or
30:31)
Extended opcode field.

1.8 Classes of Instructions

An instruction falls into exactly one of the following
three classes:

Defined
lllegal
Reserved

The class is determined by examining the opcode, and
the extended opcode if any. If the opcode, or combina-
tion of opcode and extended opcode, is not that of a
defined instruction or of a reserved instruction, the
instruction is illegal.

1.8.1 Defined Instruction Class

This class of instructions contains all the instructions
defined in the PowerPC User Instruction Set Architec-
ture, PowerPC Virtual Environment Architecture, and
PowerPC Operating Environment Architecture.

In general, defined instructions are guaranteed to be
provided in all implementations. The only exceptions
are instructions that are optional instructions. These
exceptions are identified in the instruction descriptions.

A defined instruction can have preferred and/or invalid
forms, as described in Section1.9.1, “Preferred
Instruction Forms” and Section 1.9.2, “Invalid Instruc-
tion Forms”.

1.8.2 lllegal Instruction Class

This class of instructions contains the set of instructions
described in Appendix G, “lllegal Instructions” on
page 187. lllegal instructions are available for future
extensions of the PowerPC Architecture; that is, some
future version of the PowerPC Architecture may define
any of these instructions to perform new functions.

Any attempt to execute an illegal instruction will cause
the system illegal instruction error handler to be
invoked and will have no other effect.

An instruction consisting entirely of binary Os is guaran-
teed always to be an illegal instruction. This increases
the probability that an attempt to execute data or unini-
tialized storage will result in the invocation of the sys-
tem illegal instruction error handler.

1.8.3 Reserved Instruction Class

This class of instructions contains the set of instructions
described in Appendix H, “Reserved Instructions” on
page 189.

Reserved instructions are allocated to specific pur-
poses that are outside the scope of the PowerPC Archi-
tecture.

Any attempt to execute a reserved instruction will:

m perform the actions described in Book IV, Pow-
erPC Implementation Features for the implementa-
tion if the instruction is implemented; or

B cause the system illegal instruction error handler to
be invoked if the instruction is not implemented.

12 PowerPC User Instruction Set Architecture

Version 2.02

1.9 Forms of Defined Instruc-
tions

1.9.1 Preferred Instruction Forms

Some of the defined instructions have preferred forms.
For such an instruction, the preferred form will execute
in an efficient manner, but any other form may take sig-
nificantly longer to execute than the preferred form.

Instructions having preferred forms are:

B the Condition Register Logical instructions

the Load/Store Multiple instructions

the Load/Store String instructions

the Or Immediate instruction (preferred form of
no-op)

m the Move To Condition Register Fields instruction

1.9.2 Invalid Instruction Forms

Some of the defined instructions can be coded in a
form that is invalid. An instruction form is invalid if one
or more fields of the instruction, excluding the opcode
field(s), are coded incorrectly in a manner that can be
deduced by examining only the instruction encoding.

In general, any attempt to execute an invalid form of an
instruction will either cause the system illegal instruc-
tion error handler to be invoked or yield boundedly
undefined results. Exceptions to this rule are stated in
the instruction descriptions.

Some instruction forms are invalid because the instruc-
tion contains a reserved value in a defined field (see
Section 1.5.2 on page 3); these invalid forms are not
discussed further. All other invalid forms are identified
in the instruction descriptions.

Assembler Note

Assemblers should report uses of invalid instruc-
tion forms as errors.

Chapter 1. Introduction

13

Version 2.02

1.10 Optionality

Some of the defined instructions are optional. The
optional instructions are defined in Chapter 5. “Optional
Facilities and Instructions” on page 123. Additional
optional instructions may be defined in Books Il and Ill
(e.g., see the section entitled “Lookaside Buffer Man-
agement” in Book Ill, and the chapters entitled
“Optional Facilities and Instructions” in Book Il and
Book III).

Any attempt to execute an optional instruction that is
not provided by the implementation will cause the sys-
tem illegal instruction error handler to be invoked.

In addition to instructions, other kinds of optional facili-
ties, such as registers, may be defined in Books Il and
lll. The effects of attempting to use an optional facility
that is not provided by the implementation are
described in Books Il and Il as appropriate.

1.11 Exceptions

There are two kinds of exception, those caused directly
by the execution of an instruction and those caused by
an asynchronous event. In either case, the exception
may cause one of several components of the system
software to be invoked.

The exceptions that can be caused directly by the exe-
cution of an instruction include the following:

B an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
“privileged” instruction (see Book IIl, PowerPC
Operating Environment Architecture) (system ille-
gal instruction error handler or system privileged
instruction error handler)

B the execution of a defined instruction using an
invalid form (system illegal instruction error han-
dler or system privileged instruction error handler)

B the execution of an optional instruction that is not
provided by the implementation (system illegal
instruction error handler)

B an attempt to access a storage location that is
unavailable (system instruction storage error han-
dler or system data storage error handler)

B an attempt to access storage with an effective
address alignment that is invalid for the instruction
(system alignment error handler)

B the execution of a System Call instruction (system
service program)

B the execution of a Trap instruction that traps (sys-
tem trap handler)

B the execution of a floating-point instruction that
causes a floating-point enabled exception to exist

(system floating-point enabled exception error
handler)

The exceptions that can be caused by an asynchro-
nous event are described in Book Ill, PowerPC Operat-
ing Environment Architecture.

The invocation of the system error handler is precise,
except that if one of the imprecise modes for invoking
the system floating-point enabled exception error han-
dler is in effect (see page 96) then the invocation of the
system floating-point enabled exception error handler
may be imprecise. When the system error handler is
invoked imprecisely, the excepting instruction does not
appear to complete before the next instruction starts
(because one of the effects of the excepting instruction,
namely the invocation of the system error handler, has
not yet occurred).

Additional information about exception handling can be
found in Book lll, PowerPC Operating Environment
Architecture.

1.12 Storage Addressing

A program references storage using the effective
address computed by the processor when it executes a
Storage Access or Branch instruction (or certain other
instructions described in Book I, PowerPC Virtual Envi-
ronment Architecture, and Book Ill, PowerPC Operat-
ing Environment Architecture), or when it fetches the
next sequential instruction.

1.12.1 Storage Operands

Bytes in storage are numbered consecutively starting
with 0. Each number is the address of the correspond-
ing byte.

Storage operands may be bytes, halfwords, words, or
doublewords, or, for the Load/Store Multiple and Move
Assist instructions, a sequence of bytes or words. The
address of a storage operand is the address of its first
byte (i.e., of its lowest-numbered byte). Byte ordering
is Big-Endian. However, if the optional Little-Endian
facility is implemented the system can be operated in a
mode in which byte ordering is Little-Endian; see
Section 5.3.

Operand length is implicit for each instruction.

The operand of a single-register Storage Access
instruction has a “natural” alignment boundary equal to
the operand length. In other words, the “natural”
address of an operand is an integral multiple of the
operand length. A storage operand is said to be
aligned if it is aligned at its natural boundary; otherwise
it is said to be unaligned.

14 PowerPC User Instruction Set Architecture

Version 2.02

Storage operands for single-register Storage Access
instructions have the following characteristics.
(Although not permitted as storage operands, quad-
words are shown because quadword alignment is
desirable for certain storage operands.)

Operand Length Addrgg.g3 if aligned

Byte 8 bits XXXX

Halfword 2 bytes xxx0

Word 4 bytes xx00

Doubleword 8 bytes x000

Quadword 16 bytes 0000

Note: An “X” in an address bit position indicates that
the bit can be 0 or 1 independent of the state of
other bits in the address.

The concept of alignment is also applied more gener-
ally, to any datum in storage. For example, a 12-byte
datum in storage is said to be word-aligned if its
address is an integral multiple of 4.

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. For single-register Storage Access
instructions the best performance is obtained when
storage operands are aligned. Additional effects of
data placement on performance are described in Book
Il, PowerPC Virtual Environment Architecture.

Instructions are always four bytes
word-aligned.

long and

1.12.2 Effective Address Calcula-
tion

An effective address is computed by the processor
when executing a Storage Access or Branch instruction
(or certain other instructions described in Book Il, Pow-
erPC Virtual Environment Architecture, and Book I,
PowerPC Operating Environment Architecture) or
when fetching the next sequential instruction. The fol-
lowing provides an overview of this process. More
detalil is provided in the individual instruction descrip-
tions.

Effective address calculations, for both data and
instruction accesses, use 64-bit two's complement
addition. All 64 bits of each address component partic-
ipate in the calculation regardless of mode (32-bit or
64-bit). In this computation one operand is an address
(which is by definition an unsigned number) and the
second is a signed offset. Carries out of the most sig-
nificant bit are ignored.

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arith-

metic wraps around from the maximum address,
264 _ 1. to address 0.

In 32-bit mode, the low-order 32 bits of the 64-bit result
comprise the effective address for the purpose of
addressing storage. The high-order 32 bits of the
64-bit effective address are ignored for the purpose of
accessing data, but are included whenever an effective
address is placed into a GPR by Load with Update and
Store with Update instructions. The high-order 32 bits
of the 64-bit effective address are effectively set to O for
the purpose of fetching instructions, and explicitly so
whenever an effective address is placed into the Link
Register by Branch instructions having LK=1. The
high-order 32 bits of the 64-bit effective address are set
to 0 in Special Purpose Registers when the system
error handler is invoked. As used to address storage,
the effective address arithmetic appears to wrap
around from the maximum address, 232 _ 1, to address
0 in 32-bit mode.

The 64-bit current instruction address and next instruc-
tion address are not affected by a change from 32-bit
mode to 64-bit mode, but they are affected by a change
from 64-bit mode to 32-bit mode. In the latter case, the
high-order 32 bits are set to 0.

RA is a field in the instruction which specifies an
address component in the computation of an effective
address. A zero in the RA field indicates the absence
of the corresponding address component. A value of
zero is substituted for the absent component of the
effective address computation. This substitution is
shown in the instruction descriptions as (RA|0).

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the
contents of a GPR” refers to the entire 64-bit contents,
independent of mode, but that in 32-bit mode only bits
32:63 of the 64-bit result of the computation are used to
address storage.

® With X-form instructions, in computing the effective
address of a data element, the contents of the
GPR designated by RB (or the value zero for Iswi,
Isdi, stswi, and stsdi) are added to the contents
of the GPR designated by RA or to zero if RA=0.

B With D-form instructions, the 16-bit D field is
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

B With DS-form instructions, the 14-bit DS field is
concatenated on the right with Ob0O0 and
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

Chapter 1. Introduction 15

Version 2.02

B With I-form Branch instructions, the 24-bit LI field
is concatenated on the right with 0bOO and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the next instruction. If AA=1,
this address component is the effective address of
the next instruction.

B With B-form Branch instructions, the 14-bit BD field
is concatenated on the right with 0bOO and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the next instruction. If AA=1,
this address component is the effective address of
the next instruction.

B With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concate-
nated on the right with Ob00 to form the effective
address of the next instruction.

B With sequential instruction fetching, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction.
(There is one exception to this rule, which involves
changing between 32-bit and 64-bit mode and is
described in the section entitled "Address Wrap-
ping Combined with Changing MSR Bit SF" in
Book IIl.)

If the size of the operand of a storage access instruc-
tion is more than one byte, the effective address for
each byte after the first is computed by adding 1 to the
effective address of the preceding byte.

16 PowerPC User Instruction Set Architecture

Version 2.02

Chapter 2. Branch Processor

2.1 Branch Processor Overview. 17
2.2 Instruction Execution Order 17
2.3 Branch Processor Registers. 18
2.3.1 Condition Register............ 18
2.3.2 LinkRegister 19
2.3.3 CountRegister............... 19
2.4 Branch Processor Instructions 20

2.4.1 Branch Instructions 20
2.4.2 System Call Instruction 26
2.4.3 Condition Register Logical Instruc-
tions. 27
2.4.4 Condition Register Field
Instruction 30

2.1 Branch Processor Overview

This chapter describes the registers and instructions
that make up the Branch Processor facility.
Section 2.3, “Branch Processor Registers” on page 18
describes the registers associated with the Branch Pro-
cessor. Section 2.4, “Branch Processor Instructions”
on page 20 describes the instructions associated with
the Branch Processor.

2.2 Instruction Execution Order

In general, instructions appear to execute sequentially,
in the order in which they appear in storage. The
exceptions to this rule are listed below.

B Branch instructions for which the branch is taken
cause execution to continue at the target address
specified by the Branch instruction.

B Trap instructions for which the trap conditions are
satisfied, and System Call instructions, cause the
appropriate system handler to be invoked.

B Exceptions can cause the system error handler to
be invoked, as described in Section 1.11, “Excep-
tions” on page 14.

B Returning from a system service program, system
trap handler, or system error handler causes exe-
cution to continue at a specified address.

The model of program execution in which the proces-
sor appears to execute one instruction at a time, com-
pleting each instruction before beginning to execute the
next instruction is called the “sequential execution
model”. In general, the processor obeys the sequential
execution model. For the instructions and facilities

defined in this Book, the only exceptions to this rule are
the following.

m A floating-point exception occurs when the proces-
sor is running in one of the Imprecise floating-point
exception modes (see Section 4.4, “Floating-Point
Exceptions” on page 94). The instruction that
causes the exception does not complete before
the next instruction begins execution, with respect
to setting exception bits and (if the exception is
enabled) invoking the system error handler.

B A Store instruction modifies one or more bytes in
an area of storage that contains instructions that
will subsequently be executed. Before an instruc-
tion in that area of storage is executed, software
synchronization is required to ensure that the
instructions executed are consistent with the
results produced by the Store instruction.

—— Programming Note

This software synchronization will generally be
provided by system library programs (see the
section entitled “Instruction Storage” in Book
II). Application programs should call the
appropriate system library program before
attempting to execute modified instructions.

Chapter 2. Branch Processor 17

Version 2.02

2.3 Branch Processor Registers

2.3.1 Condition Register

The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides a
mechanism for testing (and branching).

CR |
0 31

Figure 18. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CRO0), ..., CR Field
7 (CR7), which are set in one of the following ways.

B Specified fields of the CR can be set by a move to
the CR from a GPR (mtcrf, mtocrf).

B A specified field of the CR can be set by a move to
the CR from another CR field (mcrf), from
XER3;.35 (merxr), or from the FPSCR (mcrfs).

B CR Field 0 can be set as the implicit result of a
fixed-point instruction.

B CR Field 1 can be set as the implicit result of a
floating-point instruction.

B A specified CR field can be set as the result of
either a fixed-point or a floating-point Compare
instruction.

Instructions are provided to perform logical operations
on individual CR bits and to test individual CR bits.

For all fixed-point instructions in which Rc=1, and for
addic., andi., and andis., the first three bits of CR Field
0 (bits 0:2 of the Condition Register) are set by signed
comparison of the result to zero, and the fourth bit of
CR Field 0 (bit 3 of the Condition Register) is copied
from the SO field of the XER. “Result” here refers to
the entire 64-bit value placed into the target register in
64-bit mode, and to bits 32:63 of the 64-bit value placed
into the target register in 32-bit mode.

if (64-bit mode)

then M € 0

else M € 32
if (target register)y.q; < 0 then ¢ ¢ 0b100
else if (target register)y.s; > 0 then ¢ ¢ 0b010
else c € 0b001
CRO € ¢ || XERgq

If any portion of the result is undefined, then the value
placed into the first three bits of CR Field 0 is unde-
fined.

The bits of CR Field 0 are interpreted as follows.

Bit Description

0 Negative (LT)
The result is negative.

1 Positive (GT)
The result is positive.
2 Zero (EQ)

The result is zero.

3 Summary Overflow (SO)
This is a copy of the final state of XERgg at
the completion of the instruction.

Programming Note

CR Field 0 may not reflect the “true” (infinitely pre-
cise) result if overflow occurs; see Section 3.3.8,
“Fixed-Point Arithmetic Instructions” on page 51.

The stwcx. and stdcx. instructions (see Book Il, Pow-
erPC Virtual Environment Architecture) also set CR
Field 0.

For all floating-point instructions in which Rc=1, CR
Field 1 (bits 4.7 of the Condition Register) is set to the
Floating-Point exception status, copied from bits 0:3 of
the Floating-Point Status and Control Register. This
occurs regardless of whether any exceptions are
enabled, and regardless of whether the writing of the
result is suppressed (see Section 4.4, “Floating-Point
Exceptions” on page 94). These bits are interpreted as
follows.

Bit Description

4 Floating-Point Exception Summary (FX)
This is a copy of the final state of FPSCRgy at
the completion of the instruction.

5 Floating-Point Enabled Exception Sum-
mary (FEX)
This is a copy of the final state of FPSCRggx
at the completion of the instruction.

6 Floating-Point Invalid Operation Excep-
tion Summary (VX)
This is a copy of the final state of FPSCR\yx at
the completion of the instruction.

7 Floating-Point Overflow Exception (OX)
This is a copy of the final state of FPSCR at
the completion of the instruction.

For Compare instructions, a specified CR field is set to
reflect the result of the comparison. The bits of the
specified CR field are interpreted as follows. A com-
plete description of how the bits are set is given in the
instruction descriptions in Section 3.3.9, “Fixed-Point
Compare Instructions” on page 60 and Section 4.6.7,
“Floating-Point Compare Instructions” on page 119.

Bit Description
0 Less Than, Floating-Point Less Than (LT,
FL)

For fixed-point Compare instructions, (RA) <
Sl or (RB) (signed comparison) or (RA) <Y UI

18 PowerPC User Instruction Set Architecture

Version 2.02

or (RB) (unsigned comparison). For floating-
point Compare instructions, (FRA) < (FRB).

1 Greater Than, Floating-Point Greater Than
(GT, FG)
For fixed-point Compare instructions, (RA) >
Sl or (RB) (signed comparison) or (RA) >Y Ul
or (RB) (unsigned comparison). For floating-
point Compare instructions, (FRA) > (FRB).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) =
SI, Ul, or (RB). For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Floating-Point Unor-
dered (SO,FU)
For fixed-point Compare instructions, this is a
copy of the final state of XERgg at the com-
pletion of the instruction. For floating-point
Compare instructions, one or both of (FRA)
and (FRB) is a NaN.

2.3.2 Link Register

The Link Register (LR) is a 64-hit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
holds the return address after Branch instructions for
which LK=1.

| LR
0 63

Figure 19. Link Register

2.3.3 Count Register

The Count Register (CTR) is a 64-hit register. It can be
used to hold a loop count that can be decremented dur-
ing execution of Branch instructions that contain an
appropriately coded BO field. If the value in the Count
Register is 0 before being decremented, it is -1 after-
ward. The Count Register can also be used to provide
the branch target address for the Branch Conditional to
Count Register instruction.

CTR
0 63

Figure 20. Count Register

Chapter 2. Branch Processor 19

Version 2.02

2.4 Branch Processor Instructions

2.4.1 Branch Instructions

The sequence of instruction execution can be changed
by the Branch instructions. Because all instructions are
on word boundaries, bits 62 and 63 of the generated
branch target address are ignored by the processor in
performing the branch.

The Branch instructions compute the effective address
(EA) of the target in one of the following four ways, as
described in Section 1.12.2, “Effective Address Calcu-
lation” on page 15.

1. Adding a displacement to the address of the
Branch instruction (Branch or Branch Conditional
with AA=0).

2. Specifying an absolute address (Branch or Branch
Conditional with AA=1).

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Register
(Branch Conditional to Count Register).

In all four cases, in 32-bit mode the final step in the
address computation is setting the high-order 32 bits of
the target address to 0.

For the first two methods, the target addresses can be
computed sufficiently ahead of the Branch instruction
that instructions can be prefetched along the target
path. For the third and fourth methods, prefetching
instructions along the target path is also possible pro-
vided the Link Register or the Count Register is loaded
sufficiently ahead of the Branch instruction.

Branching can be conditional or unconditional, and the
return address can optionally be provided. If the return
address is to be provided (LK=1), the effective address
of the instruction following the Branch instruction is
placed into the Link Register after the branch target
address has been computed; this is done regardless of
whether the branch is taken.

For Branch Conditional instructions, the BO field speci-
fies the conditions under which the branch is taken, as
shown in Figure 21. In the figure, M=0 in 64-bit mode
and M=32 in 32-bit mode. If the BO field specifies that
the CTR is to be decremented, the entire 64-bit CTR is
decremented regardless of the mode.

BO Description

0000z | Decrement the CTR, then branch if the
decremented CTRy.63#0 and CRg,=0
0001z | Decrement the CTR, then branch if the

decremented CTRy;.63=0 and CRg=0
00lat | Branch if CRg=0

0100z | Decrement the CTR, then branch if the
decremented CTRy;.63#0 and CRg=1
0101z | Decrement the CTR, then branch if the

decremented CTRy;.63=0 and CRg=1
O0llat | Branch if CRg=1

1a00t | Decrement the CTR, then branch if the
decremented CTRy.63#0

1a01t | Decrement the CTR, then branch if the
decremented CTRy;.63=0

1z1zz | Branch always

Notes:
1. “z" denotes a bit that is ignored.
2. The “a” and “t” bits are used as described below.

Figure 21. BO field encodings

The “a” and “t” bits of the BO field can be used by soft-
ware to provide a hint about whether the branch is
likely to be taken or is likely not to be taken, as shown
in Figure 22.

at Hint

00 No hint is given

01 Reserved

10 The branch is very likely not to be taken
11 The branch is very likely to be taken

Figure 22. “at” bit encodings

—— Programming Note

Many implementations have dynamic mechanisms
for predicting whether a branch will be taken.
Because the dynamic prediction is likely to be very
accurate, and is likely to be overridden by any hint
provided by the “at” bits, the “at” bits should be set
to Ob00 unless the static prediction implied by
at=0b10 or at=0b11 is highly likely to be correct.

For Branch Conditional to Link Register and Branch
Conditional to Count Register instructions, the BH field

20 PowerPC User Instruction Set Architecture

Version 2.02

provides a hint about the use of the instruction, as
shown in Figure 23.

BH Hint

00 bclr[l]: The instruction is a subroutine
return

becetr[l]: The instruction is not a subroutine
return; the target address is likely to
be the same as the target address
used the preceding time the branch
was taken

01 belr[l]l: The instruction is not a subroutine
return; the target address is likely to
be the same as the target address
used the preceding time the branch
was taken

becetr[l]: Reserved

10 Reserved
11 bcelr[l] and bectr([l]: The target address is not
predictable

Figure 23. BH field encodings

Programming Note

The hint provided by the BH field is independent of
the hint provided by the “at” bits (e.g., the BH field
provides no indication of whether the branch is
likely to be taken).

Extended mnemonics for branches

Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with por-
tions of the BO and Bl fields as part of the mnemonic
rather than as part of a numeric operand. Some of
these are shown as examples with the Branch instruc-
tions. See Appendix B, “Assembler Extended Mne-
monics” on page 151 for additional extended
mnemonics.

—— Programming Note

The hints provided by the “at” bits and by the BH
field do not affect the results of executing the
instruction.

The “z” bits should be set to 0, because they may
be assigned a meaning in some future version of
the architecture.

Chapter 2. Branch Processor 21

Version 2.02

Programming Note

Many implementations have dynamic mechanisms for
predicting the target addresses of bclr[l] and bcctr]l]
instructions. These mechanisms may cache return
addresses (i.e., Link Register values set by Branch
instructions for which LK=1 and for which the branch
was taken) and recently used branch target addresses.
To obtain the best performance across the widest range
of implementations, the programmer should obey the
following rules.

B Use Branch instructions for which LK=1 only as
subroutine calls (including function calls, etc.).

B Pair each subroutine call (i.e., each Branch
instruction for which LK=1 and the branch is taken)
with a bclr instruction that returns from the subrou-
tine and has BH=0b00.

B Do not use bclrl as a subroutine call. (Some
implementations access the return address cache
at most once per instruction; such implementations
are likely to treat bclrl as a subroutine return, and
not as a subroutine call.)

m For bcelr[l] and bcectr[l], use the appropriate value
in the BH field.

The following are examples of programming conven-
tions that obey these rules. In the examples, BH is
assumed to contain 0b00 unless otherwise stated. In
addition, the “at” bits are assumed to be coded appro-
priately.

Let A, B, and Glue be specific programs.

B | oop counts:
Keep them in the Count Register, and use a bc
instruction (LK=0) to decrement the count and to
branch back to the beginning of the loop if the dec-
remented count is nonzero.

B Computed goto’s, case statements, etc.:
Use the Count Register to hold the address to
branch to, and use a bcctr instruction (LK=0, and
BH=0b11 if appropriate) to branch to the selected
address.

m Direct subroutine linkage:
Here A calls B and B returns to A. The two
branches should be as follows.
- Acalls B: use a bl or bcl instruction (LK=1).
- B returns to A: use a bclr instruction (LK=0)
(the return address is in, or can be restored to,
the Link Register).

m Indirect subroutine linkage:

Here A calls Glue, Glue calls B, and B returns to A
rather than to Glue. (Such a calling sequence is
common in linkage code used when the subroutine
that the programmer wants to call, here B, is in a
different module from the caller; the Binder inserts
“glue” code to mediate the branch.) The three
branches should be as follows.

- A calls Glue: use a bl or bcl instruction
(LK=1).

- Glue calls B: place the address of B into the
Count Register, and use a bcctr instruction
(LK=0).

- B returns to A: use a bclr instruction (LK=0)
(the return address is in, or can be restored to,
the Link Register).

® Function call:

Here A calls a function, the identity of which may
vary from one instance of the call to another,
instead of calling a specific program B. This case
should be handled using the conventions of the
preceding two bullets, depending on whether the
call is direct or indirect, with the following differ-
ences.

- If the call is direct, place the address of the
function into the Count Register, and use a
bectrl instruction (LK=1) instead of a bl or bcl
instruction.

- For the bcctr[l] instruction that branches to
the function, use BH=0b11 if appropriate.

22 PowerPC User Instruction Set Architecture

Version 2.02

—— Compatibility Note
The bits corresponding to the current “a” and “t”
bits, and to the current “z” bits except in the “branch
always” BO encoding, had different meanings in
versions of the architecture that precede Version
2.00.

B The bit corresponding to the “t” bit was called
the “y” bit. The “y” bit indicated whether to use
the architected default prediction (y=0) or to
use the complement of the default prediction
(y=1). The default prediction was defined as
follows.

- If the instruction is bc[l][a] with a negative
value in the displacement field, the branch
is taken. (This is the only case in which
the prediction corresponding to the “y” bit
differs from the prediction corresponding
to the “t” bit.)

- Inall other cases (bc[l][a] with a nonnega-
tive value in the displacement field, bclr[l],
or bectrll]), the branch is not taken.

B The BO encodings that test both the Count
Register and the Condition Register had a “y”
bit in place of the current “z” bit. The meaning
of the “y” bit was as described in the preceding
item.

B The “a” bit was a “z” bit.

Because these bhits have always been defined
either to be ignored or to be treated as hints, a
given program will produce the same result on any
implementation regardless of the values of the bits.
Also, because even the “y” bit is ignored, in prac-
tice, by most processors that implement versions of
the architecture that precede Version 2.00, the per-
formance of a given program on those processors
will not be affected by the values of the bits.

Chapter 2. Branch Processor 23

Version 2.02

Branch I-form

Branch Conditional B-form

b target_addr (AA=0 LK=0) bc BO,Bl,target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0) bca BO,Bl,target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1) bcl BO,Bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1) bcla BO,Bl target_addr (AA=1 LK=1)

18 LI AA|LK 16 BO BI BD AA|LK
0 6 30 |31 0 6 1 16 30|31

if AA then NIA ¢, EXTS(LI || 0b00)
else NIA ;.. CIA + EXTS(LI || 0b0O0)
if LK then LR ¢;_, CIA + 4

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
LI || ObOO sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
LI || Ob0O sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

if (64-bit mode)

then M < 0
else M « 32
if —BO, then CTR ¢ CTR - 1
ctr ok ¢ BO, | ((CTRy.e3 * 0) & BO,)

cond ok ¢ BO, | (CRgr = BO;)
if ctr ok & cond ok then
if AA then NIA «;., EXTS(BD || 0b00)
else NIA «;., CIA + EXTS(BD || 0b00)

, lea
if LK then LR ¢, CIA + 4

The BI field specifies the Condition Register bit to be
tested. The BO field is used to resolve the branch as
described in Figure 21. target_addr specifies the
branch target address.

If AA=0 then the branch target address is the sum of
BD || Ob00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
BD || Ob0O0 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

Extended: Equivalent to:

blt target bc 12,0,target
bne cr2,target bc 4,10,target
bdnz target bc 16,0,target

24 PowerPC User Instruction Set Architecture

Version 2.02

Branch Conditional to Link Register
XL-form

Branch Conditional to Count Register
XL-form

belr BO,BI,BH (LK=0) bectr BO,BI,BH (LK=0)
belrl BO,BI,BH (LK=1) bectrl BO,BI,BH (LK=1)
[POWER mnemonics: bcr, berl] [POWER mnemonics: bcc, becl]

19 BO Bl /Il |BH 16 LK 19 BO Bl /Il |BH 528 LK
0 6 1 16 |19 |21 31 0 6 11 16 19 |21 31

if (64-bit mode)

then M € 0
else M « 32
if —BO, then CTR ¢ CTR - 1
ctr ok € BO, | ((CTRy.q3 # 0) @ BO,

cond ok ¢ BO, | (CRgr = BO,)

if ctr ok & cond ok then NIA «;_, LRj.. || 0b0O
if LK then LR ¢, CIA + 4

The BI field specifies the Condition Register bit to be
tested. The BO field is used to resolve the branch as
described in Figure 21. The BH field is used as
described in Figure 23. The branch target address is
LRg.g1 || Ob0O, with the high-order 32 bits of the branch
target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Link Register:

Extended: Equivalent to:
bclr 4.6 bclr 4.6,0
bltir bclr 12,0,0
bnelr cr2 bclr 4,10,0
bdnzir bclr 16,0,0

—— Programming Note

bcelr, belrl, becetr, and bectrl each serve as both a
basic and an extended mnemonic. The Assembler
will recognize a bclr, bclrl, becetr, or beetrl mne-
monic with three operands as the basic form, and a
belr, bcelrl, beetr, or becetrl mnemonic with two
operands as the extended form. In the extended
form the BH operand is omitted and assumed to be
0b00.

cond ok ¢ BO, | (CRg; = BO;)
if cond ok then NIA «;., CTR,.; || 0b0O
if LK then LR ¢, CIA + 4

lea

The BI field specifies the Condition Register bit to be
tested. The BO field is used to resolve the branch as
described in Figure 21. The BH field is used as
described in Figure 23. The branch target address is
CTRg.6;1 || Ob0O, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

If the “decrement and test CTR” option is specified
(BO,=0), the instruction form is invalid.

Special Registers Altered:
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Count Register.

Extended: Equivalent to:
bcctr 4,6 bcctr 4,6,0
bltctr bcctr 12,0,0
bnectr cr2 bcctr 4,10,0

Chapter 2. Branch Processor 25

Version 2.02

2.4.2 System Call Instruction

This instruction provides the means by which a pro-
gram can call upon the system to perform a service.

System Call SC-form

sc LEV

[POWER mnemonic: svca]

17 i 1 1 LEV /ey
0 6 1 16 20 27 |30(31

This instruction calls the system to perform a service.
A complete description of this instruction can be found
in Book lll, PowerPC Operating Environment Architec-
ture.

The use of the LEV field is described in Book Ill. The
LEV values greater than 1 are reserved, and bits 0:5 of
the LEV field (instruction bits 20:25) are treated as a
reserved field.

When control is returned to the program that executed
the System Call instruction, the contents of the regis-
ters will depend on the register conventions used by
the program providing the system service.

This instruction is context synchronizing (see Book lIl,
PowerPC Operating Environment Architecture).

Special Registers Altered:
Dependent on the system service

—— Programming Note

sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form. In the extended form the LEV operand is
omitted and assumed to be 0.

In application programs the value of the LEV oper-
and for sc should be 0.

—— Compatibility Note
For a discussion of POWER compatibility with
respect to instruction bits 16:29, see Appendix E,
“Incompatibilities with the POWER Architecture” on
page 175.

26 PowerPC User Instruction Set Architecture

Version 2.02

2.4.3 Condition Register Logical
Instructions

The Condition Register Logical instructions have pre-
ferred forms; see Section 1.9.1, “Preferred Instruction
Forms” on page 13. In the preferred forms, the BT and
BB fields satisfy the following rule.
B The bit specified by BT is in the same Condition
Register field as the bit specified by BB.

Extended mnemonics for Condition
Register logical operations

A set of extended mnemonics is provided that allow
additional Condition Register logical operations,
beyond those provided by the basic Condition Register
Logical instructions, to be coded easily. Some of these
are shown as examples with the Condition Register
Logical instructions. See Appendix B, “Assembler
Extended Mnemonics” on page 151 for additional
extended mnemonics.

Chapter 2. Branch Processor 27

Version 2.02

Condition Register AND XL-form

crand BT,BA,BB

Condition Register OR XL-form

cror BT,BA,BB

19 BT BA BB 257 /
0 6 11 16 21 31

19 BT BA BB 449 /
0 6 11 16 21 31

CRgp € CRga & CRpg
The bit in the Condition Register specified by BA is
ANDed with the bit in the Condition Register specified
by BB, and the result is placed into the bit in the Condi-
tion Register specified by BT.

Special Registers Altered:
CRgr

Condition Register XOR XL-form

crxor BT,BA,BB

CRgp ¢ CRma | CRpp

The bit in the Condition Register specified by BA is
ORed with the bit in the Condition Register specified by
BB, and the result is placed into the bit in the Condition
Register specified by BT.

Special Registers Altered:
CRgr

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter OR:

Extended:
crmove Bx,By cror

Equivalent to:
Bx,By,By

Condition Register NAND XL-form

crnand BT,BA,BB

19 BT BA BB 193 /

19 BT BA BB 225 /
0 6 11 16 21 31

CRgr € CRpa @® CRpp

The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB, and the result is placed into the bit in the Condi-
tion Register specified by BT.

Special Registers Altered:
CRgr

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter XOR:

Extended:
crclr Bx

Equivalent to:
crxor Bx,Bx,Bx

CRgr € 7(CRga & CRgp)

The bit in the Condition Register specified by BA is
ANDed with the bit in the Condition Register specified
by BB, and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CRgr

28 PowerPC User Instruction Set Architecture

Version 2.02

Condition Register NOR XL-form

crnor BT,BA,BB

Condition Register Equivalent XL-form

creqv BT,BA,BB

19 BT BA BB 33 /
0 6 11 16 21 31

19 BT BA BB 289 /
0 6 11 16 21 31

CRgp ¢ 7 (CRpa | CRgp)

The bit in the Condition Register specified by BA is
ORed with the bit in the Condition Register specified by
BB, and the complemented result is placed into the bit
in the Condition Register specified by BT.

Special Registers Altered:
CRgr
Extended Mnemonics:
Example of extended mnemonics for Condition Regis-
ter NOR:

Extended:
crnot Bx,By crnor Bx,By,By

Equivalent to:

Condition Register AND with Complement
XL-form

crandc BT,BA,BB

CRgr € CRpa = CRpp

The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB, and the complemented result is placed into the
bit in the Condition Register specified by BT.

Special Registers Altered:
CRgr
Extended Mnemonics:
Example of extended mnemonics for Condition Regis-
ter Equivalent:

Extended:
crset BXx

Equivalent to:
creqv Bx,Bx,Bx

Condition Register OR with Complement
XL-form

crorc BT,BA,BB

19 BT BA BB 129 /

0 6 11 16 21 31

19 BT BA BB 417 /
0 6 11 16 21 31

CRgr € CRga & “CRgg

The bit in the Condition Register specified by BA is
ANDed with the complement of the bit in the Condition
Register specified by BB, and the result is placed into
the bit in the Condition Register specified by BT.

Special Registers Altered:
CRgr

CRpp ¢ CRgp | 7CRgp

The bit in the Condition Register specified by BA is
ORed with the complement of the bit in the Condition
Register specified by BB, and the result is placed into
the bit in the Condition Register specified by BT.

Special Registers Altered:
CRgr

Chapter 2. Branch Processor 29

Version 2.02

2.4.4 Condition Register Field
Instruction

Move Condition Register Field XL-form

mcrf BF,BFA
19 BF |/[| BFA | /[| Il 0 /
0 6 9 |11 14 |16 21 31

CR4><BF :4XBF+3 < CR4><BFA : 4XBFA+3

The contents of Condition Register field BFA are copied
to Condition Register field BF.

Special Registers Altered:
CR field BF

30 PowerPC User Instruction Set Architecture

Version 2.02

Chapter 3. Fixed-Point Processor

3.1 Fixed-Point Processor Overview .. 31
3.2 Fixed-Point Processor

Registers. 31
3.2.1 General Purpose Registers.. 31
3.2.2 Fixed-Point Exception Register. . 32
3.3 Fixed-Point Processor Instructions. 33
3.3.1 Fixed-Point Storage Access Instruc-

tions 33
3.3.1.1 Storage Access Exceptions ... 33
3.3.2 Fixed-Point Load Instructions ... 33
3.3.3 Fixed-Point Store Instructions . .. 40
3.3.4 Fixed-Point Load and Store with Byte

Reversal Instructions 44
3.3.5 Fixed-Point Load and Store Multiple
Instructions 46

3.3.6 Fixed-Point Move Assist Instruc-

3.3.7 Other Fixed-Point Instructions . . . 50
3.3.8 Fixed-Point Arithmetic Instructions51
3.3.9 Fixed-Point Compare Instructions 60
3.3.10 Fixed-Point Trap Instructions . . . 62
3.3.11 Fixed-Point Logical Instructions . 65
3.3.12 Fixed-Point Rotate and Shift
Instructions 71
3.3.12.1 Fixed-Point Rotate Instructions 71
3.3.12.2 Fixed-Point Shift Instructions . 77
3.3.13 Move To/From System Register
Instructions 81

3.1 Fixed-Point Processor Overview

This chapter describes the registers and instructions
that make up the Fixed-Point Processor facility.
Section 3.2, “Fixed-Point Processor Registers”
describes the registers associated with the Fixed-Point
Processor. Section 3.3, “Fixed-Point Processor
Instructions” on page 33 describes the instructions
associated with the Fixed-Point Processor.

3.2 Fixed-Point Processor
Registers

3.2.1 General Purpose Registers

All manipulation of information is done in registers
internal to the Fixed-Point Processor. The principal

storage internal to the Fixed-Point Processor is a set of
32 General Purpose Registers (GPRs). See Figure 24.

GPRO

GPR 1

GPR 30

GPR 31

0 63

Figure 24. General Purpose Registers

Each GPR is a 64-hit register.

Chapter 3. Fixed-Point Processor 31

Version 2.02

3.2.2 Fixed-Point Exception Register

The Fixed-Point Exception Register (XER) is a 64-bit
register.

XER
0 63

Figure 25. Fixed-Point Exception Register

35:56
The bit definitions for the Fixed-Point Exception Regis- 57:63
ter are shown below. Here M=0 in 64-bit mode and
M=32 in 32-bit mode.

The bits are set based on the operation of an instruc-
tion considered as a whole, not on intermediate results

(e.g., the Subtract From Carrying instruction, the result For a discussion of POWER compatibility with
of which is specified as the sum of three values, sets respect to the XER, see Appendix E, “Incompatibili-
bits in the Fixed-Point Exception Register based on the ties with the POWER Architecture” on page 175.

Compatibility Note

instructions set it to 1 if any 1-bits have been
shifted out of a negative operand, and set it to
0 otherwise. The CA bit is not altered by
Compare instructions, nor by other instruc-
tions (except Shift Right Algebraic, mtspr to
the XER, and mcrxr) that cannot carry.

Reserved

This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

entire operation, not on an intermediate sum).

Bit(s Description
0:31 Reserved

32 Summary Overflow (SO)

The Summary Overflow bit is set to 1 when-
ever an instruction (except mtspr) sets the
Overflow bit. Once set, the SO bit remains set
until it is cleared by an mtspr instruction
(specifying the XER) or an mcrxr instruction.
It is not altered by Compare instructions, nor
by other instructions (except mtspr to the
XER, and mcrxr) that cannot overflow. Exe-
cuting an mtspr instruction to the XER, sup-
plying the values 0 for SO and 1 for OV,
causes SO to be set to 0 and OV to be set to
1.

33 Overflow (OV)

The Overflow bit is set to indicate that an over-
flow has occurred during execution of an
instruction. XO-form Add, Subtract From, and
Negate instructions having OE=1 set it to 1 if
the carry out of bit M is not equal to the carry
out of bit M+1, and set it to O otherwise.
XO-form Multiply Low and Divide instructions
having OE=1 set it to 1 if the result cannot be
represented in 64 bits (mulld, divd, divdu) or
in 32 bits (mullw, divw, divwu), and set it to 0
otherwise. The OV bit is not altered by Com-
pare instructions, nor by other instructions
(except mtspr to the XER, and mcrxr) that
cannot overflow.

34 Carry (CA)
The Carry bit is set as follows, during execu-
tion of certain instructions. Add Carrying,
Subtract From Carrying, Add Extended, and
Subtract From Extended types of instructions
set it to 1 if there is a carry out of bit M, and
set it to O otherwise. Shift Right Algebraic

32 PowerPC User Instruction Set Architecture

Version 2.02

3.3 Fixed-Point Processor Instructions

3.3.1 Fixed-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.12.2, “Effective Address Calcu-
lation” on page 15.

Programming Note

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address.

—— Programming Note

The DS field in DS-form Storage Access instruc-
tions is a word offset, not a byte offset like the D
field in D-form Storage Access instructions. How-
ever, for programming convenience, Assemblers
should support the specification of byte offsets for
both forms of instruction.

3.3.1.1 Storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is unavail-
able.

3.3.2 Fixed-Point Load Instructions

The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into register RT.

Many of the Load instructions have an “update” form, in
which register RA is updated with the effective address.
For these forms, if RA+0 and RA=+RT, the effective
address is placed into register RA and the storage ele-
ment (byte, halfword, word, or doubleword) addressed
by EA is loaded into RT.

—— Programming Note

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions.
Moreover, Load with Update instructions may take
longer to execute in some implementations than
the corresponding pair of a non-update Load
instruction and an Add instruction.

Chapter 3. Fixed-Point Processor 33

Version 2.02

Load Byte and Zero D-form

Ibz RT,D(RA)

Load Byte and Zero Indexed X-form

Ibzx RT,RA,RB

34 RT RA D

31 RT RA RB 87 /
0 6 11 16 21 31

if RA = 0 then

else RA)
FA ¢ b + EXTS(D)
RT ¢ %0 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0)+ D.
The byte in storage addressed by EA is loaded into
RT56:63' RTO:55 are setto 0.

Special Registers Altered:
None

Load Byte and Zero with Update
D-form

Ibzu RT,D(RA)

if RA = 0 then
else

EA < b + (RB)
RT ¢ %0 || MEM(EA, 1)

b«o0
b «

RA)

Let the effective address (EA) be the sum
(RA]0)+ (RB). The byte in storage addressed by EA is
loaded into RT5g.63. RTg:55 are setto 0.

Special Registers Altered:
None

Load Byte and Zero with Update Indexed
X-form

Ibzux RT,RA,RB

35 RT RA D
0 6 1 16 31

31 RT RA RB 119 /

0 6 1 16 21 31

EA ¢ (RA) + EXTS(D)
RT ¢ %60 || MEM(EA, 1)
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
byte in storage addressed by EA is loaded into RTsg-g3.
RTp.55 are set to 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
RT ¢ %0 || MEM(EA, 1)
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
The byte in storage addressed by EA is loaded into
RT56263' RTO:55 are setto 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

34 PowerPC User Instruction Set Architecture

Version 2.02

Load Halfword and Zero D-form

Ihz RT,D(RA)

40 RT RA D

Load Halfword and Zero Indexed
X-form

lhzx RT,RA,RB

if RA = 0 then

else RA)
FA ¢ b + EXTS(D)
RT ¢ %80 || MEM(ER, 2)

Let the effective address (EA) be the sum (RA|0)+ D.
The halfword in storage addressed by EA is loaded into
RT48:63' RTO:47 are setto 0.

Special Registers Altered:
None

Load Halfword and Zero with Update
D-form

lhzu RT,D(RA)

31 RT RA RB 279 /

0 6 11 16 21 31

if RA =0 thenb < 0
else b < (RA)
EA € b + (RB)

RT « %80 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RAJ0)+ (RB). The halfword in storage addressed by
EA is loaded into RT4g.63. RTg.47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update
Indexed X-form

Ihzux RT,RA,RB

41 RT RA D
0 6 11 16 31

31 RT RA RB 311 /
0 6 11 16 21 31

EA ¢« (RA) + EXTS(D)
RT « %80 || MEM(ER, 2)
RA « EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into
RT4g.63- RTg-47 are setto 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA € (RA) + (RB)
RT « %80 || MEM(EA, 2)
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into
RT48263' RTO:47 are setto 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 35

Version 2.02

Load Halfword Algebraic D-form

Iha RT,D(RA)

42 RT RA D
0 6 1 16 31

if RA =0 thenb « 0
else b « (Rp)
EA < b + EXTS(D)

RT ¢ EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum (RA|0)+ D.
The halfword in storage addressed by EA is loaded into
RT4g.63- RTg.47 are filled with a copy of bit 0 of the
loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update
D-form

Ihau RT,D(RA)

Load Halfword Algebraic Indexed
X-form

lhax RT,RA,RB

31 RT RA RB 343 /
0 6 11 16 21 31

if RA =0 thenb < 0
else b « (Ra)
EA € b + (RB)

RT & EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum
(RAJ0)+ (RB). The halfword in storage addressed by
EA is loaded into RTg.63. RTq.47 are filled with a copy
of bit 0 of the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update
Indexed X-form

lhaux RT,RA,RB

43 RT RA D
0 6 1 16 31

31 RT RA RB 375 /

0 6 11 16 21 31

EA < (RA) + EXTS(D)
RT < EXTS(MEM(EA, 2))
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into

RT,g.63- RTp.47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
RT ¢ EXTS(MEM(EA, 2))
RA < EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into

RT4g.63- RTg.47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

36 PowerPC User Instruction Set Architecture

Version 2.02

Load Word and Zero D-form

lwz RT,D(RA)
[POWER mnemonic: 1]

Load Word and Zero Indexed X-form

lwzx RT,RA,RB
[POWER mnemonic: Ix]

32 RT RA D
0 6 1 16 31

31 RT RA RB 23 /

0 6 11 16 21 31

if RA =0 thenb « 0
b« (

else RA)
EA ¢« b + EXTS(D)
RT ¢ 320 || MEM(ER, 4)

Let the effective address (EA) be the sum (RA|0)+ D.
The word in storage addressed by EA is loaded into
RT32:63. RTO:31 are setto 0.

Special Registers Altered:
None

Load Word and Zero with Update D-form

lwzu RT,D(RA)
[POWER mnemonic: lu]

33 RT RA D
0 6 11 16 31

if RA = 0 then b « 0
else b < (RA)
EA € b + (RB)

RT ¢ 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RAJ0)+ (RB). The word in storage addressed by EA is
loaded into RT3,.63. RTp.37 are setto 0.

Special Registers Altered:
None

Load Word and Zero with Update Indexed
X-form

lwzux RT,RA,RB
[POWER mnemonic: lux]

EA ¢ (RA) + EXTS(D)
RT ¢ 320 || MEM(ER, 4)
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
word in storage addressed by EA is loaded into
RT32:63. RT0:31 are setto 0.

EA is placed into register RA.

If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
