
Preventing Synergistic Processor Element
Indefinite Stalls Resulting from Instruction
Depletion in the Cell Broadband Engine Processor
for CMOS SOI 90 nm

Applications Note

Version 1.0

February 19, 2007—Preliminary

Copyright and Disclaimer
© Copyright International Business Machines Corporation, Sony Computer Entertainment Incorporated,
Toshiba Corporation 2007

All Rights Reserved

“SONY” and “ ああ “ are registered trademarks of Sony Corporation.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change Sony and SCEI product specifications or warranties. Nothing in this document shall operate as an
express or implied license or indemnity under the intellectual property rights of Sony and SCEI or third parties. All informa-
tion contained in this document was obtained in specific environments, and is presented as an illustration. The results
obtained in other operating environments can vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will Sony and
SCEI be liable for damages arising directly or indirectly from any use of the information contained in this document.

Sony Corporation
1-7-1 Konan,

Minato-ku, Tokyo, 108-0075 Japan

Sony Computer Entertainment Inc.
2-6-21 Minami-Aoyama, Minato-ku,

Tokyo, 107-0062 Japan

The Sony home page can be found at http://www.sony.net
The SCEI home page can be found at http://www.scei.co.jp

The Cell Broadband Engine home page can be found at http://cell.scei.co.jp

Version 1.0
February 19, 2007—Preliminary

Applications Note
CMOS SOI 90 nm for DD 1, DD 2, DD 3

 Cell Broadband Engine

Version 1.0
February 19, 2007—Preliminary

Introduction

Page 3

Introduction

Under some circumstances, the use of a branch hint instruction can cause a Synergistic Processor Element
(SPE) to stall indefinitely. SPE instruction prefetch can be interfered with in such a way that an SPE can run
out of instructions to execute and make no further progress, while remaining in the RUN state.

SPE indefinite stalls are triggered by certain branch hint instructions. Instruction fetch failures occur when
these hinted branches are executed while local storage is very busy servicing reads and writes from the direct
memory access (DMA) unit, and program loads and stores. These instruction fetch failures lead to
unrecoverable run-out conditions that result in SPE indefinite stalls. An SPE that indefinitely stalls does not
corrupt its program state, or any other system resource. A stalled SPE still acknowledges asynchronous
interrupts, and resumes typical execution. The SPE in all versions after the 90 nm Cell Broadband Engine™
(CBE) processor have been fixed and execute these code sequences correctly.

It is important to note that the run-out condition occurs occasionally in normally-executing programs and does
not by itself lead to the indefinite stall condition. In fact, it is the instruction fetch failure that leads to a run-out
condition just before the SPE indefinitely stalls.

There are two steps that should be taken to mitigate the indefinite stall condition:

• Systems incorporating the 90 nm CBE processor should be updated so that their firmware or operating
system software includes a device driver that detects the SPE stall condition and restarts the stalled SPE.
When the SPE is restarted it will execute normally. A stalled SPE might remain stalled for several
thousand cycles before system software can react to an SPE indefinite stall and resume execution. The
recovery time depends upon the system software implementation.

• Software running on a 90 nm CBE processor can be coded such that there is no known scenario in which
the indefinite stall occurs. The analysis of the issue is difficult; therefore all 90 nm based systems should
feature updated system software.

This applications note describes the methods of constructing a system that can recover from the indefinite
run-out stall and how to construct software that is free from the currently known causes of indefinite stalls.

Recovery Support in System Software

System software such as operating system components or system firmware can program the performance
monitor to detect stalled SPEs. The system can then recover a stalled SPE. Recovery can be accomplished
in two ways.

• The synergistic processor unit (SPU) Run Control Register can be used to first stop the SPE and, when it
becomes idle, restart it. When the SPE is restarted, it will again make forward progress. Note that this
recovery cannot be accomplished through the S bit of the memory flow controller (MFC) State Register 1
(MFC_SR1). The SPE start is a synchronizing event, and clears the hint currently in effect before
execution begins.

• System software can also program the thermal throttle controller to simulate a high temperature event
and pause the stalled SPE for a short interval of time. When the pause is complete, the SPE clears the
hint currently in effect and begins making forward progress.

Applications Note
CMOS SOI 90 nm for DD 1, DD 2, DD 3
Cell Broadband Engine

Recovery Support in System Software

Page 4
Version 1.0

February 19, 2007—Preliminary

Systems based on the 90 nm CBE processor might include preexisting software that cannot be recompiled or
recoded and therefore rely on the presence of recovery support in the system software. Systems that use
these workarounds might not allow access to the performance monitor or thermal throttle controller for other
purposes. System software can offer a debug mode wherein it records the address of the SPE instruction
where the indefinite run-out stall occurs.

Compiler Options to Enable the Generation of Code that is Free from Indefinite Stalls

Software can be constructed in such a way as to reduce the probability of an SPE indefinite stall. SPU
compilers can offer compilation modes that feature varying degrees of safety and performance. See the SPU
compiler reference documentation for information about the compiler options that might be available to avoid
indefinite stalls.

Decisions about how much performance to trade off for a given degree of safety should be made considering
the real time constraints versus the average performance requirements of the software. Software with strict
real time constraints might be unable to tolerate the recovery time and might require coding to minimize the
risk of an SPE indefinite stall and have known performance. Software that requires very high performance
might be coded for performance and allow the system software to recover in the rare case of an indefinite
stall.

Information for Assembly Writers and Compiler Implementers

When it is important to avoid indefinite stalls, some restrictions must be placed upon how the inline
approaches to hinted branches and their target destinations are coded. If these rules are followed, no known
scenario can result in an indefinite stall. Adherence to these rules might increase the number of instructions in
the SPE software, or the average run time of the SPE software, or both.

Most often, the negative effects are small and are in code that does not perform loads and stores in bursts of
eight or more cycles long. In many cases where there are long bursts of loads and stores, the worst case
performance of the software is improved–even for cases where the indefinite stall does not actually occur.

Prohibition of Multiple Branch Hint Instructions

The first rule governs the inline sequence of code that leads to a hinted branch. This inline sequence must not
include a hint to some other branch. If there is another branch hint, the SPE software can indefinitely stall,
even though the target destinations are carefully coded as described in the following sections.

Coding Rules for Hinted Branch Target Stream

The remaining rules govern the sequence of code after the target of the hinted branch. The target must be
coded such that at least one of the following conditions is true:

• The instruction prefetch engine is reset before the indefinite stall occurs.

• Instruction prefetch is allowed to access local storage in a timely fashion. The suggested tactic is the
judicious insertion of hint prefetch (HBR.P) instructions at key points in the sequence of instructions that
follow the branch target.

Prefetch Blocks

The rules presented in this document relate to the blocks of code fetched by the prefetch engine. Instructions
are processed according to their position within aligned 64-byte blocks. Figure 1 on page 5 shows how a
hinted branch and the branch target code fit into 64-byte blocks with 16 instructions per block. For ease of

Applications Note
CMOS SOI 90 nm for DD 1, DD 2, DD 3

 Cell Broadband Engine

Version 1.0
February 19, 2007—Preliminary

Recovery Support in System Software

Page 5

description, names have been assigned to the blocks. Block br+0 contains the hinted branch. Block br+1 is
the 64-byte block following block br+0 in local storage. Block br+2 follows br+1 in local storage. Block 0
contains the target of the hinted branch. In the absence of certain special case branches described in Special
Case Branches on page 6, blocks 1 through 4 follow linearly in local storage after block 0. Note that blocks
belonging to the branch and its inline instruction stream (br+0, br+1, and br+2) can overlap with the blocks of
the target instruction stream (blocks 0, 1, 2, ...) in an arbitrary manner.

Figure 1. A Hinted Branch and a Target that Can Indefinitely Stall

Block br + 0 br: brnz $1,bt

hint br,bt
…

Block br + 1

Block br + 2

Hinted Branch

bt: ai $3,$5,1

Block 1

I0:
I1:
I2:
…
I15:

Block 2

I0:
I1:
I2:
…
I15:

Block 3

I0:
I1:
…
I14:
I15:

Block 4

Block 5

Aligned 64-Byte
Block Containing the
Branch Target.

Block 0

Aligned 64-Byte
Block After the
Branch Target.

A hinted branch or a
taken branch* in this
region prevents the
indefinite stall condi-
tion by resetting the
prefetch engine.

The 64-byte blocks
contain 16 instructions
numbered I0 to I15.

* Taken branches must
have a target address
different than the next
sequential inline
address after the
branch in order to reset
the prefetch engine.

Applications Note
CMOS SOI 90 nm for DD 1, DD 2, DD 3
Cell Broadband Engine

Recovery Support in System Software

Page 6
Version 1.0

February 19, 2007—Preliminary

Resetting the Prefetch Engine Before an Indefinite Stall Occurs

A branch target instruction stream can trigger an indefinite stall if the SPE can execute sequentially inline into
the last instruction of block 3. If instruction fetch fails, the instructions from block 4 and later might never be
fetched. The SPE might then stall indefinitely, waiting for the necessary instructions to arrive unless the
sequential execution ends and the prefetch engine is reset. Sequential inline execution can end in two ways:

• There can be a mispredicted branch. Branches that are not hinted are speculated to go inline. Therefore,
an unhinted branch that branches away from the inline path is mispredicted and causes a pipeline flush
that resets the prefetch engine.

• There can be a hinted branch. Hinted branches end sequential inline execution by executing from the
hinted target, rather from the inline path. Of course, the hinted target can be another opportunity for an
indefinite stall.

Thus, the presence of a hinted branch or a taken branch before I15 of block 3 ensures that the SPE will not
indefinitely stall in this target stream. Note that unhinted taken branches that go to the instruction after the
branch are processed in the same manner as a no-op instruction, and do not typically cause a pipeline flush,
and therefore do not serve as a guarantee against an indefinite stall in this target stream.

Special Case Branches

Certain unhinted but taken branches, called “special case branches”, complicate the definitions of blocks 2, 3,
and 4. These branches can alter the defined locations of these blocks to other local storage addresses.
Figure 2 on page 7 shows a branch at I15 of block 1. If this branch happens to go to one of the three
addresses in the inline path of the original hinted branch, the SPE can speculate to one of these addresses
and avoid a pipeline flush. The three target addresses that can avoid a pipeline flush are I0 of blocks br+1,
br+2, and br+3. When instructions are sequenced from these addresses, they are in the place of block 2, and
the SPE can still stall indefinitely if it reaches the equivalent of block 4.

Applications Note
CMOS SOI 90 nm for DD 1, DD 2, DD 3

 Cell Broadband Engine

Version 1.0
February 19, 2007—Preliminary

Recovery Support in System Software

Page 7

Block 3 can also end with a special case branch. Again the block 3 special case branch can go to its target
without a pipeline flush and allows the SPE to make forward progress in a manner where an indefinite stall is
still possible. Block 3 special case branches go to I0 of blocks br+1, br+2, and br+3. Similarly to block 3, block
5 can end with a special case branch. However, block 5 special case branches must go to I0 of block 2.

Figure 2. Special Case Branch at I15 of Block 1

Block 0

Block 1

I0:

I15: brnz $1,

Block 2

Block 3

Block 4

Block br + 1

Block br + 2

Block br + 3

I0:

Block br + 2

Block br + 3

Block br + 4

I0:

Block br + 3

Block br + 4

Block br + 5

I0_of_block_br_+_1

I0_of_block_br_+_2

I0_of_block_br_+_3

The presence of a branch in I15 of block 1 can create some sequencing alternatives that
can still stall indefinitely. Any branch target other than the three listed here will eliminate
the possibility of an indefinite stall. If a branch to these targets does exist, the effect is to
create the following other locations in local storage that behave in an equivalent manner
to blocks 2, 3, and 4.

{

Applications Note
CMOS SOI 90 nm for DD 1, DD 2, DD 3
Cell Broadband Engine

Recovery Support in System Software

Page 8
Version 1.0

February 19, 2007—Preliminary

Block 5 special case branches are not allowed when method 2, presented later, is used to prevent indefinite
stalls. Note that the existence of a block 1 special case branch does not prevent the existence of block 3 or
block 5 special case branches. In summary there are three important special case branches:

1. An unhinted branch at I15 of block 1 that targets I0 of block br + 1, br + 2, or br + 3

2. An unhinted branch at I15 of block 3 that targets I0 of block br + 1, br + 2, or br + 3

3. An unhinted branch at I15 of block 5 that targets I0 of block 2

Facilitating Timely Prefetches by Prefetch Hint (HBR.P) Instruction Insertion

Instruction prefetch has the lowest priority of access to the local storage. It waits until there is an available
cycle when no DMA, program load or store, or hint instruction is scheduled. If prefetch is prevented for long
periods of time, the SPE can eventually run out of instructions and pause in a run-out state, until the pipeline
drains and prefetch can access local storage. In general, branch target streams stall when the instruction
prefetch unit cannot access local storage in a timely fashion. However, a small number of scenarios exists
where the prefetch unit is blocked from the local storage, triggering a prefetch-engine failure, leading to an
indefinite stall.

In order to prevent the instruction-fetch failure, it is important to allow the queued instruction prefetches to
access local storage before certain instructions are issued. Instruction prefetch can be aided by the execution
of HBR.P instructions. HBR.P instructions are an implementation-specific prefetch timing hint. HBR.P instruc-
tions are intended to help software avoid the loss of performance associated with instruction run-out in code
that has long bursts of local storage activity. In the 90 nm SPE, HBR.P instructions stall until local storage is
available to accept a prefetch request. When the HBR.P instruction reaches the instruction prefetch unit, the
highest priority prefetch is sent to local storage. DMA local storage access obeys certain timing rules, but is
essentially asynchronous to instruction execution and can use an almost arbitrary set of cycles during the
execution of the program. The SPE issues instructions that do not use local storage while the DMA is using
local storage. Thus, the only easy method to guarantee that instruction fetch can access local storage before
a certain instruction is issued is to insert HBR.P instructions. See the Synergistic Processor Unit Instruction
Set Architecture for information about the HBR instruction and the prefetch (P) bit.

In the 90 nm SPE, instruction prefetch requires that at least two cycles be free on the 128-byte read out path
of local storage. This requirement means that HBR.P instructions must be scheduled so that there is at least
one cycle between the cycle they issue and the cycle that another HBR.P or branch hint instruction issues, to
ensure that instruction fetch can occur. If there is not a cycle of separation, the instruction prefetch logic will
ignore the HBR.P instruction and wait for another opportunity. If the HBR.P instruction is ignored, it does not
help avoid any possible indefinite stall.

A branch target stream can be coded with HBR.P instructions in one of three ways to eliminate the known
scenarios of indefinite stalls. If none of these methods are possible, a branch target stream is still safe if none
of the branches that target it are hinted.

Applications Note
CMOS SOI 90 nm for DD 1, DD 2, DD 3

 Cell Broadband Engine

Version 1.0
February 19, 2007—Preliminary

Recovery Support in System Software

Page 9

Method 1

This method of preventing an SPE indefinite runout stall requires two HBR.P instructions after the branch
target. The first of these HBR.P instructions must be before I6 of block 0, and the second HBR.P must be
before I6 of block 2. If the branch target is in I6 or later of block 0, this method cannot be used. Note that in
method 1 the prefetch of blocks 2 and 3 are completed correctly, so a special case branch at I15 of block 1
will cause the pipeline to flush. Special case branches in blocks 3 and 5 also cause pipeline flushes if
method 1 is used. See Figure 3 on page 9 to visualize the positioning of the HBR.P instructions.

Figure 3. Method 1

bt:

Block 0

Block 1

I0:

I1:

I2:
…

I15:

Block 2

Block 3

Block 4

I0:

…

I6:

…

I15:

I15:

I14:

The first HBR.P instruction must be in I0, I1, …
I5 of block 0 and at or after the target.

I0:

I15:

I6:

The second HBR.P instruction must be before
I6 of block 2. The second HBR.P must be
scheduled so that it is issued at least two
cycles after the first HBR.P issues. If the sec-
ond HBR.P is at least three instructions after
the first HBR.P, there must be at least one
cycle between the issuance of the two HBR.P
instructions.

…

I0:

I1:
…

I15:

I14:

I0:

I1:
…

Block 5

I15:

I14:

I0:

I1:
…

Applications Note
CMOS SOI 90 nm for DD 1, DD 2, DD 3
Cell Broadband Engine

Recovery Support in System Software

Page 10
Version 1.0

February 19, 2007—Preliminary

Method 2

This method of preventing an SPE indefinite runout stall requires two HBR.P instructions after the branch
target and no special case branch at I15 of blocks 1, 3, or 5. The first HBR.P instructions must be before I6 of
block 1. The second HBR.P must be before I6 of block 3. See Figure 4 to visualize these requirements.

Figure 4. Method 2

bt:

Block 0

Block 1

I0:

…

I6:

…

I15:

Block 2

Block 3

Block 4

I0:

…

I6:

…

I15:

The first HBR.P instruction must be before I6
of block 1 but at or after the branch target
(bt).

I0:

I15:

I6:

The second HBR.P instruction must be
before I6 of block 3. The second HBR.P
must be scheduled so that it is issued at
least two cycles after the first HBR.P
issues. If the second HBR.P is at least
three instructions after the first HBR.P,
there must be at least one cycle between
the issuance of the two HBR.P instruc-
tions.

I0:

…

I6:
…

I15:

I15:

I14:

I0:

I1:
…

Block 5

I15:

I14:

I0:

I1:
…

Applications Note
CMOS SOI 90 nm for DD 1, DD 2, DD 3

 Cell Broadband Engine

Version 1.0
February 19, 2007—Preliminary

Recovery Support in System Software

Page 11

Method 3

This method of preventing an SPE indefinite stall requires there to be three HBR.P instructions after the
branch target. The first HBR.P instructions must be before I4 of block 2. The second HBR.P must be before I6
of block 2. The third HBR.P must be after I15 of block 2 but before I6 of block 4.

There can be important special case branches at I15 of blocks 1 and 3 that alter where and how many HBR.P
instructions must be inserted. A special case branch at the end of block 5 causes a pipeline flush. See
Figure 5 on page 11 to visualize these positional requirements. For example, if such a branch is present at
I15 of block 1 and the first HBR.P has not been placed before I15 of block 1, the first HBR.P must be placed
in I0 through I3 of the block of the special case target (the alias for block 2 shown in Figure 2 on page 7) and
also, in the case that the branch is conditional, I0 through I3 of block 2 from the inline path of the special case
branch. Special case branches in block 3 alter the block 4 HBR.P placement in a similar manner.

Figure 5. Method 3

bt:

Block 0

Block 1

I0:

I1:

I2:

…

I15:*

Block 2

Block 3

Block 4

I0:

I4:

I6:

…

I15:

The first HBR.P instruction must be before I4
of block 2 but at or after the branch target.

I0:

I15

I6:

The second HBR.P instruction must be
before I6 of block 2. The second HBR.P
must be scheduled so that it is issued at
least two cycles after the first HBR.P issues.
If the second HBR.P is at least three instruc-
tions after the first HBR.P, there must be at
least one cycle between the issuance of the
two HBR.P instructions.

The third HBR.P instruction must be after
I15 of block 2 and before I6 of block 4.

* Possible Special Case Branches

I0:

I4:

I6:

…

I15:

I0:

I1:

I2:

…

I15:*

Block 5

I15:

I14:

I0:

I1:
…

Applications Note
CMOS SOI 90 nm for DD 1, DD 2, DD 3
Cell Broadband Engine

Summary of Coding Methods

Page 12
Version 1.0

February 19, 2007—Preliminary

Summary of Coding Methods

Table 1 on page 12 summarizes the cases in which each of the three target coding methods is applicable.
Note that method 1 is preferable to method 2, if it is applicable, because it features prefetch hints earlier in the
instruction schedule where they reduce the probability of performance loss due to instruction run-out.
Method 2 requires fewer prefetch hints than method 3. Method 3 also features more alternative sequencing
options that can make analysis much more complex.

Table 1. Target Method Applicability

Method Number of HBR.P Can be used if target is I6 or
later of block 0

Can be used if there are special
case branches

1 2 No Yes

2 2 Yes No

3 3 Yes Yes

Applications Note
CMOS SOI 90 nm for DD 1, DD 2, DD 3

 Cell Broadband Engine

Version 1.0
February 19, 2007—Preliminary

Revision Log

Page 13

Revision Log

Revision Date Version Contents of Modification

February 19, 2007 1.0 • First revision.

	Title
	Copyright and Disclaimer
	Introduction
	Recovery Support in System Software
	Compiler Options to Enable the Generation of Code that is Free from Indefinite Stalls

	Information for Assembly Writers and Compiler Implementers
	Prohibition of Multiple Branch Hint Instructions
	Coding Rules for Hinted Branch Target Stream
	Prefetch Blocks
	Resetting the Prefetch Engine Before an Indefinite Stall Occurs
	Special Case Branches
	Facilitating Timely Prefetches by Prefetch Hint (HBR.P) Instruction Insertion
	Method 1
	Method 2
	Method 3
	Summary of Coding Methods

	Revision Log

