
Synergistic Processor Unit

Instruction Set Architecture

Version 1.2

January 27, 2007

Title Page

Copyright and Disclaimer
© Copyright International Business Machines Corporation, Sony Computer Entertainment Incorporated, Toshiba Corpora-
tion 2006, 2007

All Rights Reserved

“ SONY ” and “*****“ are registered trademarks of Sony Corporation.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change Sony and SCEI product specifications or warranties. Nothing in this document shall operate as an
express or implied license or indemnity under the intellectual property rights of Sony and SCEI or third parties. All informa-
tion contained in this document was obtained in specific environments, and is presented as an illustration. The results
obtained in other operating environments can vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will Sony and
SCEI be liable for damages arising directly or indirectly from any use of the information contained in this document.

Sony Corporation
6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo, 141-0001 Japan
(1-7-1 Konan, Minato-ku, Tokyo, 108-0075 Japan: from February 2007)

Sony Computer Entertainment Inc.
2-6-21 Minami-Aoyama, Minato-ku,
Tokyo, 107-0062 Japan

The Sony home page can be found at http://www.sony.net
The SCEI home page can be found at http://www.scei.co.jp

The Cell Broadband Engine home page can be found at http://cell.scei.co.jp

Version 1.2
January 27, 2007

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Contents

Page 3 of 278

Contents

List of Figures ... 9

List of Tables ... 11

Preface ... 13
Who Should Read This Document .. 13
Related Documents ... 13
Document Organization .. 13
Version Numbering ... 14
How to Use the Instruction Descriptions ... 15
Conventions and Notations Used in This Manual ... 16

Byte Ordering ... 16
Bit Ordering .. 16
Bit Encoding ... 16
Instructions, Mnemonics, and Operands .. 16
Referencing Registers or Channels, Fields, and Bit Ranges ... 17
Register Transfer Language Instruction Definitions ... 18
Instruction Fields .. 19
Instruction Operation Notations .. 20

Revision Log ... 21

1. Introduction ... 23

2. SPU Architectural Overview .. 25
2.1 Data Representation ... 25
2.2 Data Layout in Registers ... 28
2.3 Instruction Formats ... 28

3. Memory—Load/Store Instructions .. 31
Load Quadword (d-form) .. 32
Load Quadword (x-form) .. 33
Load Quadword (a-form) .. 34
Load Quadword Instruction Relative (a-form) .. 35
Store Quadword (d-form) ... 36
Store Quadword (x-form) .. 37
Store Quadword (a-form) ... 38
Store Quadword Instruction Relative (a-form) .. 39
Generate Controls for Byte Insertion (d-form) .. 40
Generate Controls for Byte Insertion (x-form) .. 41
Generate Controls for Halfword Insertion (d-form) ... 42
Generate Controls for Halfword Insertion (x-form) ... 43
Generate Controls for Word Insertion (d-form) ... 44
Generate Controls for Word Insertion (x-form) ... 45

Instruction Set Architecture

Synergistic Processor Unit

Contents

Page 4 of 278
Version 1.2

January 27, 2007

Generate Controls for Doubleword Insertion (d-form) .. 46
Generate Controls for Doubleword Insertion (x-form) .. 47

4. Constant-Formation Instructions ... 49
Immediate Load Halfword ... 50
Immediate Load Halfword Upper .. 51
Immediate Load Word .. 52
Immediate Load Address .. 53
Immediate Or Halfword Lower .. 54
Form Select Mask for Bytes Immediate .. 55

5. Integer and Logical Instructions .. 57
Add Halfword .. 58
Add Halfword Immediate .. 59
Add Word .. 60
Add Word Immediate .. 61
Subtract from Halfword ... 62
Subtract from Halfword Immediate ... 63
Subtract from Word .. 64
Subtract from Word Immediate ... 65
Add Extended ... 66
Carry Generate ... 67
Carry Generate Extended ... 68
Subtract from Extended .. 69
Borrow Generate .. 70
Borrow Generate Extended .. 71
Multiply ... 72
Multiply Unsigned ... 73
Multiply Immediate .. 74
Multiply Unsigned Immediate ... 75
Multiply and Add ... 76
Multiply High ... 77
Multiply and Shift Right ... 78
Multiply High High ... 79
Multiply High High and Add .. 80
Multiply High High Unsigned .. 81
Multiply High High Unsigned and Add .. 82
Count Leading Zeros .. 83
Count Ones in Bytes ... 84
Form Select Mask for Bytes ... 85
Form Select Mask for Halfwords .. 86
Form Select Mask for Words .. 87
Gather Bits from Bytes ... 88
Gather Bits from Halfwords .. 89
Gather Bits from Words .. 90
Average Bytes .. 91
Absolute Differences of Bytes .. 92
Sum Bytes into Halfwords .. 93
Extend Sign Byte to Halfword ... 94
Extend Sign Halfword to Word ... 95

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Contents

Page 5 of 278

Extend Sign Word to Doubleword .. 96
And ... 97
And with Complement .. 98
And Byte Immediate ... 99
And Halfword Immediate .. 100
And Word Immediate .. 101
Or ... 102
Or with Complement ... 103
Or Byte Immediate ... 104
Or Halfword Immediate .. 105
Or Word Immediate .. 106
Or Across ... 107
Exclusive Or ... 108
Exclusive Or Byte Immediate ... 109
Exclusive Or Halfword Immediate .. 110
Exclusive Or Word Immediate .. 111
Nand ... 112
Nor .. 113
Equivalent ... 114
Select Bits .. 115
Shuffle Bytes .. 116

6. Shift and Rotate Instructions ... 117
Shift Left Halfword .. 118
Shift Left Halfword Immediate .. 119
Shift Left Word .. 120
Shift Left Word Immediate .. 121
Shift Left Quadword by Bits .. 122
Shift Left Quadword by Bits Immediate .. 123
Shift Left Quadword by Bytes ... 124
Shift Left Quadword by Bytes Immediate ... 125
Shift Left Quadword by Bytes from Bit Shift Count ... 126
Rotate Halfword .. 127
Rotate Halfword Immediate .. 128
Rotate Word ... 129
Rotate Word Immediate ... 130
Rotate Quadword by Bytes .. 131
Rotate Quadword by Bytes Immediate ... 132
Rotate Quadword by Bytes from Bit Shift Count .. 133
Rotate Quadword by Bits ... 134
Rotate Quadword by Bits Immediate .. 135
Rotate and Mask Halfword ... 136
Rotate and Mask Halfword Immediate ... 137
Rotate and Mask Word ... 138
Rotate and Mask Word Immediate ... 139
Rotate and Mask Quadword by Bytes .. 140
Rotate and Mask Quadword by Bytes Immediate .. 141
Rotate and Mask Quadword Bytes from Bit Shift Count .. 142
Rotate and Mask Quadword by Bits ... 143
Rotate and Mask Quadword by Bits Immediate ... 144

Instruction Set Architecture

Synergistic Processor Unit

Contents

Page 6 of 278
Version 1.2

January 27, 2007

Rotate and Mask Algebraic Halfword ... 145
Rotate and Mask Algebraic Halfword Immediate ... 146
Rotate and Mask Algebraic Word ... 147
Rotate and Mask Algebraic Word Immediate ... 148

7. Compare, Branch, and Halt Instructions ... 149
Halt If Equal .. 150
Halt If Equal Immediate .. 151
Halt If Greater Than .. 152
Halt If Greater Than Immediate .. 153
Halt If Logically Greater Than ... 154
Halt If Logically Greater Than Immediate ... 155
Compare Equal Byte .. 156
Compare Equal Byte Immediate ... 157
Compare Equal Halfword ... 158
Compare Equal Halfword Immediate .. 159
Compare Equal Word ... 160
Compare Equal Word Immediate ... 161
Compare Greater Than Byte .. 162
Compare Greater Than Byte Immediate .. 163
Compare Greater Than Halfword ... 164
Compare Greater Than Halfword Immediate ... 165
Compare Greater Than Word ... 166
Compare Greater Than Word Immediate ... 167
Compare Logical Greater Than Byte .. 168
Compare Logical Greater Than Byte Immediate .. 169
Compare Logical Greater Than Halfword ... 170
Compare Logical Greater Than Halfword Immediate ... 171
Compare Logical Greater Than Word .. 172
Compare Logical Greater Than Word Immediate ... 173
Branch Relative .. 174
Branch Absolute ... 175
Branch Relative and Set Link ... 176
Branch Absolute and Set Link .. 177
Branch Indirect ... 178
Interrupt Return .. 179
Branch Indirect and Set Link if External Data ... 180
Branch Indirect and Set Link .. 181
Branch If Not Zero Word ... 182
Branch If Zero Word ... 183
Branch If Not Zero Halfword ... 184
Branch If Zero Halfword .. 185
Branch Indirect If Zero .. 186
Branch Indirect If Not Zero ... 187
Branch Indirect If Zero Halfword ... 188
Branch Indirect If Not Zero Halfword .. 189

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Contents

Page 7 of 278

8. Hint-for-Branch Instructions .. 191
Hint for Branch (r-form) .. 192
Hint for Branch (a-form) .. 193
Hint for Branch Relative ... 194

9. Floating-Point Instructions .. 195
9.1 Single Precision (Extended-Range Mode) .. 195
9.2 Double Precision ... 197

9.2.1 Conversions Between Single-Precision and Double-Precision Format 198
9.2.2 Exception Conditions ... 198

9.3 Floating-Point Status and Control Register ... 200
Floating Add ... 202
Double Floating Add ... 203
Floating Subtract .. 204
Double Floating Subtract .. 205
Floating Multiply ... 206
Double Floating Multiply ... 207
Floating Multiply and Add ... 208
Double Floating Multiply and Add ... 209
Floating Negative Multiply and Subtract ... 210
Double Floating Negative Multiply and Subtract .. 211
Floating Multiply and Subtract .. 212
Double Floating Multiply and Subtract .. 213
Double Floating Negative Multiply and Add ... 214
Floating Reciprocal Estimate .. 215
Floating Reciprocal Absolute Square Root Estimate ... 217
Floating Interpolate ... 219
Convert Signed Integer to Floating ... 220
Convert Floating to Signed Integer ... 221
Convert Unsigned Integer to Floating ... 222
Convert Floating to Unsigned Integer ... 223
Floating Round Double to Single .. 224
Floating Extend Single to Double ... 225
Double Floating Compare Equal .. 226
Double Floating Compare Magnitude Equal .. 227
Double Floating Compare Greater Than .. 228
Double Floating Compare Magnitude Greater Than .. 229
Double Floating Test Special Value ... 230
Floating Compare Equal ... 231
Floating Compare Magnitude Equal ... 232
Floating Compare Greater Than .. 233
Floating Compare Magnitude Greater Than ... 234
Floating-Point Status and Control Register Write ... 235
Floating-Point Status and Control Register Read .. 236

10. Control Instructions .. 237
Stop and Signal .. 238
Stop and Signal with Dependencies ... 239
No Operation (Load) ... 240

Instruction Set Architecture

Synergistic Processor Unit

Contents

Page 8 of 278
Version 1.2

January 27, 2007

No Operation (Execute) .. 241
Synchronize .. 242
Synchronize Data ... 243
Move from Special-Purpose Register ... 244
Move to Special-Purpose Register ... 245

11. Channel Instructions ... 247
Read Channel ... 248
Read Channel Count .. 249
Write Channel ... 250

12. SPU Interrupt Facility .. 251
12.1 SPU Interrupt Handler ... 251
12.2 SPU Interrupt Facility Channels .. 252

13. Synchronization and Ordering ... 253
13.1 Speculation, Reordering, and Caching SPU Local Storage Access ... 254
13.2 SPU Internal Execution State .. 254
13.3 Synchronization Primitives .. 254
13.4 Caching SPU Local Storage Access ... 256
13.5 Self-Modifying Code .. 256
13.6 External Local Storage Access ... 256
13.7 Speculation and Reordering of Channel Reads and Channel Writes ... 257
13.8 Channel Interface with External Device .. 258
13.9 Execution State Set by an SPU Program through the Channel Interface 258
13.10 Execution State Set by an External Device ... 258

Appendix A. Instruction Table Sorted by Instruction Mnemonic 259

Appendix B. Details of the Generate Controls Instructions 265

Glossary ... 267

Index ... 271

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

List of Figures

Page 9 of 278

List of Figures
Figure i. Format of an Instruction Description .. 15

Figure 2-1. Bit and Byte Numbering of Halfwords .. 26

Figure 2-2. Bit and Byte Numbering of Words .. 26

Figure 2-3. Bit and Byte Numbering of Doublewords ... 26

Figure 2-4. Bit and Byte Numbering of Quadwords .. 27

Figure 2-5. Register Layout of Data Types ... 28

Figure 2-6. RR Instruction Format .. 28

Figure 2-7. RRR Instruction Format ... 28

Figure 2-8. RI7 Instruction Format .. 28

Figure 2-9. RI10 Instruction Format .. 29

Figure 2-10. RI16 Instruction Format .. 29

Figure 2-11. RI18 Instruction Format .. 29

Figure 13-1. Systems with Multiple Accesses to Local Storage ... 253

Instruction Set Architecture

Synergistic Processor Unit

List of Figures

Page 10 of 278
Version 1.2

January 27, 2007

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

List of Tables

Page 11 of 278

List of Tables
Table i. Temporary Names Used in the RTL and Their Widths .. 18

Table ii. Instruction Fields .. 19

Table iii. Instruction Operation Notations .. 20

Table 1-1. Key Features of the SPU ISA Architecture and Implementation .. 23

Table 2-1. Bit and Byte Numbering Figures .. 26

Table 3-1. Example LSLR Values and Corresponding Local Storage Sizes ... 31

Table 5-1. Binary Values in Register RC and Byte Results .. 116

Table 9-1. Single-Precision (Extended-Range Mode) Minimum and Maximum Values 195

Table 9-2. Instructions and Exception Settings ... 196

Table 9-3. Double-Precision (IEEE Mode) Minimum and Maximum Values ... 197

Table 9-4. Single-Precision (IEEE Mode) Minimum and Maximum Values .. 198

Table 9-5. Instructions and Exception Settings ... 200

Table 12-1. Feature Bits [D] and [E] Settings and Results .. 251

Table 13-1. Local Storage Accesses ... 253

Table 13-2. Synchronization Instructions .. 255

Table 13-3. Synchronizing Multiple Accesses to Local Storage .. 256

Table 13-4. Sending Data and Synchronizing through Local Storage .. 257

Table 13-5. Receiving Data and Synchronizing through Local Storage .. 257

Table 13-6. Synchronizing through the Channel Interface .. 258

Table A-1. Instructions Sorted by Mnemonic ... 259

Table B-1. Byte Insertion: Rightmost 4 Bits of the Effective Address and Created Mask 265

Table B-2. Halfword Insertion: Rightmost 4 Bits of the Effective Address and Created Mask 266

Table B-3. Word Insertion: Rightmost 4 Bits of the Effective Address and Created Mask 266

Table B-4. Doubleword Insertion: Rightmost 4 Bits of Effective Address and Created Mask 266

Instruction Set Architecture

Synergistic Processor Unit

List of Tables

Page 12 of 278
Version 1.2

January 27, 2007

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Preface

Page 13 of 278

Preface

The purpose of this document is to describe the Synergistic Processor Unit (SPU) Instruction Set Architecture
(ISA) as it relates to the Cell Broadband Engine™ Architecture (CBEA).

Who Should Read This Document

This document is intended for designers who plan to develop products using the SPU ISA. Use this document
in conjunction with the documents listed in Related Documents on page 13.

Related Documents

The following documents are reference materials for the SPU ISA.

Document Organization

Title Version Date

Cell Broadband Engine Architecture 1.01 October 2006

PowerPC User Instruction Set Architecture, Book I 2.02 January 2005

PowerPC Virtual Environment Architecture, Book II 2.02 January 2005

PowerPC Operating Environment Architecture, Book III 2.02 January 2005

Section Description

Front Matter Title Page, Copyright and Disclaimer, Contents, List of Figures, List of
Tables

Preface Describes this document, related documents, responsibilities, and other
general information

Revision Log High-level list of changes from the last version to this version

Section 1 Introduction on page 23 Provides a high-level description of the SPU architecture and its purpose.

Section 2 SPU Architectural Overview on page 25 Provides an overview of the SPU architecture.

Section 3 Memory—Load/Store Instructions on page 31 Lists and describes the SPU load/store instructions.

Section 4 Constant-Formation Instructions on page 49 Lists and describes the SPU constant-formation instructions.

Section 5 Integer and Logical Instructions on page 57 Lists and describes the SPU integer and logical instructions.

Section 6 Shift and Rotate Instructions on page 117 Lists and describes the SPU shift and rotate instructions.

Section 7 Compare, Branch, and Halt Instructions on
page 149 Lists and describes the SPU compare, branch, and halt instructions.

Section 8 Hint-for-Branch Instructions on page 191 Lists and describes the SPU hint-for-branch instruction.

Section 9 Floating-Point Instructions on page 195 Lists and describes the SPU floating-point instructions.

Section 10 Control Instructions on page 237 Lists and describes the SPU control instructions.

Section 11 Channel Instructions on page 247 Describes the instructions used to communicate between the SPU and
external devices through the channel interfaces.

Instruction Set Architecture

Synergistic Processor Unit

Preface

Page 14 of 278
Version 1.2

January 27, 2007

Version Numbering

The document version number appears on the title page and in the footer of every page. The format of the
version number is V.xy, where:

• V is the major version level. This number is incremented when a new required feature is added to the
architecture. The major and minor revision numbers are set to zero. For example, version 1.12 becomes
version 2.00.

• x is the major revision level. This number is incremented when a new, optional feature is added to the
architecture or a major change is added that could affect a programmer. The minor revision level is set to
zero. For example, version 1.12 becomes version 1.20.

• y is the minor revision level. This number is incremented for every new release that does not contain any
new required or optional features. For example, version 1.12 becomes version 1.13.

Section 12 SPU Interrupt Facility on page 251 Describes the SPU interrupt facility.

Section 13 Synchronization and Ordering on page 253 Describes the SPU sequentially ordered programming model.

Appendix A Instruction Table Sorted by Instruction Mne-
monic on page 259 Lists the SPU instructions sorted by their mnemonics.

Appendix B Details of the Generate Controls Instructions
on page 265

Provides the details of the masks that are generated by the generate con-
trols instructions.

Section Description

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Preface

Page 15 of 278

How to Use the Instruction Descriptions

Figure i illustrates how to use the instruction descriptions provided in this document.

Figure i. Format of an Instruction Description

Instruction Mnemonic

Instruction Name

Instruction Operands

Instruction OpCode
(Binary)

Instruction Format

Instruction Description

Instruction

Required or Optional Version

Calculations

Instruction Set Architecture

Synergistic Processor Unit

Preface

Page 16 of 278
Version 1.2

January 27, 2007

Conventions and Notations Used in This Manual

Byte Ordering

Throughout this document, standard IBM big-endian notation is used, meaning that bytes are numbered in
ascending order from left to right. Big-endian and little-endian byte ordering are described in the Cell Broad-
band Engine Architecture document

Bit Ordering

Bits are numbered in ascending order from left to right with bit 0 representing the most-significant bit (MSb)
and bit 31 the least-significant bit (LSb).

Bit Encoding

The notation for bit encoding is as follows:

• Hexadecimal values are preceded by 0x.
For example: 0x0A00.

• Binary values are preceded by 0b.
For example: 0b1010.

Instructions, Mnemonics, and Operands

This document follows the following conventions for instructions, mnemonics, and operands:

• Instruction mnemonics are written in bold type. For example, sync for the synchronize instruction.

• Each instruction description in this document indicates whether the instruction is optional or required and
which version of the architecture introduced the instruction. The instruction description includes the mne-
monic and a formatted list of operands as shown in Figure i on page 15. In addition, each instruction
description provides a sample assembler language statement showing the format supported by the
assembler.

• Variables are written in italic type.

M
S

b

LS
b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Preface

Page 17 of 278

Referencing Registers or Channels, Fields, and Bit Ranges

Registers and channels are referred to by their full name or by their mnemonic (also called the short name).
Fields are referred to by their field name or by their bit position.

Usually, the register mnemonic is followed by the field name or bit position enclosed in brackets. For
example: MSR[R]. An equal sign followed by a value indicates the value to which the field is set; for example,
MSR[R] = 0. When referencing a range of bit numbers, the starting and ending bit numbers are enclosed in
brackets and separated by a colon; for example, [0:34].

The following table describes how registers, fields, and bit ranges are referred to in this document and
provides examples of the references.

Type of Reference Format Example

Reference to a specific register and a
specific field using the register short
name and the field name

Register_Short_Name[Field_Name] MSR[R]

Reference to a field using the
field name [Field_Name] [R]

Reference to a specific register and to
multiple fields using the register short
name and the field names

Register_Short_Name[Field_Name1, Field_Name2] MSR[FE0, FE1]

Reference to a specific register and to
multiple fields using the register short
name and the bit positions.

Register_Short_Name[Bit_Number, Bit_Number] MSR[52, 55]

Reference to a specific register and to a
field using the register short name and
the bit position or the bit range.

Register_Short_Name[Bit_Number] MSR[52]

Register_Short_Name[Starting_Bit_Number:Ending_Bit_Number] MSR[39:44]

A field name followed by an equal sign
(=) and a value indicates the value for
that field.

Register_Short_Name[Field_Name]=n1 MSR[FE0]=0b1
MSR[FE]=0x1

Register_Short_Name[Bit_Number]=n1 MSR[52]=0b0
MSR[52]=0x0

Register_Short_Name[Starting_Bit_Number:Ending_Bit_Number]=n1 MSR[39:43]=0b10010
MSR[39:43]=0x11

1. Where n is the binary or hexadecimal value for the field or bits specified in the brackets.

Instruction Set Architecture

Synergistic Processor Unit

Preface

Page 18 of 278
Version 1.2

January 27, 2007

Register Transfer Language Instruction Definitions

This document generally follows the register transfer language (RTL) terminology and notation in the
PowerPC® Architecture™.

RTL descriptions are provided for most instructions and are intended to clarify the verbal description, which is
the primary definition. The following conventions apply to the RTL:

• LocStor(x,y) refers to the y bytes starting at local storage location x.

• RepLeftBit(x,y) returns the value x with its leftmost bit replicated enough times to produce a total length
of y.

• The program counter (PC) contains the address of the instruction being executed when used as an oper-
and, or the address of the next instruction when used as a target.

• Temporary names used in the RTL descriptions have the widths shown in Table i.

Table i. Temporary Names Used in the RTL and Their Widths

Temporary Name Width

b, byte, byte1, byte2, c 8 bits

r, s 16 bits

bbbb, EA, QA, t, t0, t1, t2, t3, u, v 32 bits

Q, R, Memdata 128 bits

Rconcat 256 bits

i, j, k, m Meta (for description only)

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Preface

Page 19 of 278

Instruction Fields

The instructions in this document can contain one or more of the fields described in Table ii.

Table ii. Instruction Fields

Field Description

/, //, ///
Reserved field in an instruction.
Reserved fields that are currently not in use contain zeros even where this is not checked by the architec-
ture; this allows for future use without causing incompatibility.

I7 7-bit immediate

I8 8-bit immediate

I10 10-bit immediate

I16 16-bit immediate

OP
or

OPCD
Opcode

RA[18-24] Field used to specify a general-purpose register (GPR) to be used as a source or as a target.

RB[11-17] Field used to specify a GPR to be used as a source or as a target.

RC[4-10] Field used to specify a GPR to be used as a source or as a target.

RT[25-31] Field used to specify a GPR to be used as a target.

Instruction Set Architecture

Synergistic Processor Unit

Preface

Page 20 of 278
Version 1.2

January 27, 2007

Instruction Operation Notations

The instructions in this document use the notations described in Table iii. This table is ordered with respect to
the order of precedence, where the first operator in the table binds most tightly.

Table iii. Instruction Operation Notations

Notation Description See
Note

Xp Means bit p of register or value field X

Xp:q Means bits p through q inclusive of register or value X

Xp Means byte p of register or value X

Xp:q Means bytes p through q inclusive of register or value X

Xp::q Means bits p and the bits that follow for a total of q bits

Xp::q Means bytes p and the bytes that follow for a total of q bytes

p0 and p1 Mean a string of p 0 bits and of p 1 bits. 1

¬ unary NOT operator 2

*,
|*|

Signed multiplication,
Unsigned multiplication

3

+ Two’s complement addition 2

- Two’s complement subtraction, unary minus 2

=
≠

Equals
Not Equals relations

<, ≤, >, ≥ Signed comparison relations

<u, >u Unsigned comparison relations

& AND 2

| OR 2

⊕ Exclusive OR (a & ¬b | ¬a & b) 2

← Assignment

LSA Local Storage Address

LSLR Local Storage Limit Register

LocStor(LSA,width) Contents of the number of bytes indicated by the width variable in local storage at the LSA.

if (cond) then ... else ...
Conditional execution. Else is optional. The range of the then and else clauses is indicated by
indention. When the clauses are single statements, they are shown on the same line as the corre-
sponding if and else.

for ... end For loop. To and by clauses specify incrementing an iteration variable, and a while clause pro-
vides termination conditions.

do ... while (cond) Do loop. While clause provides termination conditions.

/, //, ///
Reserved field in an instruction.
Reserved fields are presently unused and should contain zeros, even where this is not checked by
the architecture, to allow for future use without causing incompatibility.

1. This is different from the PowerPC notation, which uses a leading superscript rather than a subscript.
2. The result of this operator is a bit vector of the same width as the input operands.
3. The result of this operator is a bit vector of the width of the sum of the operand widths.

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Revision Log

Page 21 of 278

Revision Log

Each release of this document supersedes all previously released versions. The revision log lists all signifi-
cant changes made to the document since its initial release. In the rest of the document, change bars in the
margin indicate that the adjacent text was significantly modified from the previous release of this document.

Revision Date Contents of Modification Errata?

January 27, 2007

Version 1.2
• Revised the introduction to the revision log (see Revision Log on page 21).
• Updated a figure to illustrate the revised instruction format (see Figure i Format of an Instruc-

tion Description on page 15). Also, updated the description on instruction conventions (see
Instructions, Mnemonics, and Operands on page 16).

• Corrected and clarified the programming note associated with the Multiply High instructions
and added a code sample (see Multiply High on page 77).

• Deleted “nonzero” from the description of an IEEE noncompliant result (see Section 9.1 Single
Precision (Extended-Range Mode) on page 195).

• Indicated that an exponent field of all ones is reserved for Infinity as well as Not-a-Number
(NaN) fields (see Table 9-3 Double-Precision (IEEE Mode) Minimum and Maximum Values on
page 197).

• Changed the description of handling denormal inputs (see Section 9.2.1 Conversions Between
Single-Precision and Double-Precision Format on page 198).

• Deleted “nonzero” from the description of FPSCR[31] (see Section 9.3 Floating-Point Status
and Control Register on page 200).

• Added five optional instructions (see Double Floating Compare Equal on page 226, Double
Floating Compare Magnitude Equal on page 227, Double Floating Compare Greater Than on
page 228, Double Floating Compare Magnitude Greater Than on page 229, and Double Float-
ing Test Special Value on page 230).

• Changed “coherency” to “consistency” in two places to conform to the terminology used in
Table 13-2 Synchronization Instructions on page 255 (see Section 13.3 Synchronization Prim-
itives on page 254).

• Added the new instructions to Appendix A (see Table A-1 Instructions Sorted by Mnemonic on
page 259).

• Made various editorial changes to the glossary (see Glossary on page 267).

• Revised the format of the instruction descriptions throughout. The instruction heading now
indicates whether the instruction is optional or required and in which version of the architecture
the instruction was introduced.

Instruction Set Architecture

Synergistic Processor Unit

Revision Log

Page 22 of 278
Version 1.2

January 27, 2007

October 4, 2006

Version 1.11
• Explained the version numbering scheme (see Version Numbering on page 14).

• Changed hexadecimal and binary representation throughout (see Bit Encoding on page 16).

• Changed the description of bit encoding and the convention for representing variables (see
Conventions and Notations Used in This Manual on page 16).

• Corrected the expansion of the bisled instruction mnemonic (see Section 2 SPU Architectural
Overview on page 25).

• Corrected the mnemonic for the Add Word instruction (see Multiply High on page 77).

• Revised the description of the Select Bits instruction (see page 115). Revised several pro-
gramming notes to explain how logical right shift and algebraic right shift are supported (see
Rotate and Mask Halfword on page 136, Rotate and Mask Halfword Immediate on page 137,
Rotate and Mask Word on page 138, and Rotate and Mask Word Immediate on page 139).

• Explained the inline prefetch (see Hint for Branch (r-form) on page 192).

• Revised the introduction to Section 9 Floating-Point Instructions on page 195 and added an
implementation note that explains that the results of floating-point instructions are implementa-
tion dependent.

• Improved Table 9-1 Single-Precision (Extended-Range Mode) Minimum and Maximum Values
on page 195, Table 9-3 Double-Precision (IEEE Mode) Minimum and Maximum Values on
page 197, and Table 9-4 Single-Precision (IEEE Mode) Minimum and Maximum Values on
page 198.

• Improved the description of double-precision instructions and indicated that the rounding mode
for each slice can be controlled independently (see Section 9.2 on page 197). Yes

• Expanded the explanation of how denormal inputs are handled (see Section 9.2.1 on
page 198).

• In the Floating-Point Status and Control Register, defined bits 20:21 and redefined bits 22:23
(see Section 9.3 on page 200). Yes

• Corrected the description of the lnop instruction (see No Operation (Load) on page 240).

• Explained how 32-bit values are handled by the 128-bit mtspr and mfspr instructions (see
Move from Special-Purpose Register on page 244 and Move to Special-Purpose Register on
page 245).

• Explained how 32-bit wide channels are handled by the rdch and wrch instructions (see Read
Channel on page 248 and Write Channel on page 250).

• Explained how to synchronize multiple accesses the local storage (see Table 13-3 on
page 256).

• Provided a more detailed description of external local storage access (see Section 13.6 on
page 256).

• Simplified and clarified the RTL descriptions of several instructions.

• Deleted Appendix A Programming Examples. Appendix B Instruction Table Sorted by Instruc-
tion Mnemonic is now Appendix A.

• Added an index (see Index on page 271).

• Added a glossary (see Glossary on page 267).

• Changed “local store” to “local storage” throughout.

• Made other changes for consistency and clarity.

January 30, 2006
Version 1.1
Corrected the pseudocode associated with Rotate and Mask Halfword Immediate (see page 137).

August 1, 2005 Initial public release.

Revision Date Contents of Modification Errata?

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Introduction

Page 23 of 278

1. Introduction

The purpose of the Synergistic Processor Unit (SPU) Instruction Set Architecture (ISA) document is to
describe a processor architecture that can fill a void between general-purpose processors and special-
purpose hardware. Whereas the objective of general-purpose processor architectures is to achieve the best
average performance on a broad set of applications, and the objective of special-purpose hardware is to
achieve the best performance on a single application, the purpose of the architecture described in this docu-
ment is to achieve leadership performance on critical workloads for game, media, and broadband systems.
The purpose of the Synergistic Processor Unit Instruction Set Architecture (SPU ISA) and the Cell Broadband
Engine Architecture (CBEA) is to provide information that allows a high degree of control by expert (real-time)
programmers while still maintaining ease of programming.

The SPU has the following key workloads:

• The graphics pipeline, which includes surface subdivision and rendering
• Stream processing, which includes encoding, decoding, encryption, and decryption
• Modeling, which includes game physics

The implementations of the SPU ISA achieve better performance to cost ratios than general-purpose proces-
sors because the SPU ISA implementations require approximately half the power and approximately half the
chip area for equivalent performance. This is made possible by the key features of the architecture and imple-
mentation listed in Table 1-1.

Table 1-1. Key Features of the SPU ISA Architecture and Implementation (Page 1 of 2)

Feature Description

128-bit SIMD execution unit organization

Many of the applications previously mentioned allow for single-instruction, multi-
ple-data (SIMD) concurrency. In an SIMD architecture, the cost (area and power)
of fetching and decoding instructions is amortized over the multiple data elements
processed. A 128-bit (most commonly 4-way 32-bit) SIMD has commonality with
SIMD processing units in other general-purpose processor architectures and the
existing code base to support it.

Software-managed memory

Whereas most processors reduce latency to memory by employing caches, the
SPU in the CBEA implements a small local memory rather than a cache. This
approach requires approximately half the area per byte and significantly less
power per access, as compared to a cache hierarchy. In addition, it provides a
high degree of control for real-time programming. Because the latency and
instruction overhead associated with direct memory access (DMA) transfers
exceeds that of the latency of servicing a cache miss, this approach achieves an
advantage only if the DMA transfer size is sufficiently large and is sufficiently pre-
dictable (that is, DMA can be issued before data is needed).

Load/store architecture to support efficient static ran-
dom access memory (SRAM) design

The SPU ISA microarchitecture is organized to enable efficient implementations
that use single-ported (local storage) memory.

Large unified register file

The 128-entry register file in the SPU architecture allows for deeply pipelined
high-frequency implementations without requiring register renaming to avoid reg-
ister starvation. This is especially important when latencies are covered by soft-
ware loop unrolling or other interleaving techniques. Rename hardware typically
consumes a significant fraction of the area and power in modern high-frequency
general-purpose processors.

ISA support to eliminate branches
The SPU ISA defines compare instructions to set masks that can be used in three
operand select instructions to create efficient conditional assignments. Such con-
ditional assignments can be used to avoid difficult-to-predict branches.

Instruction Set Architecture

Synergistic Processor Unit

Introduction

Page 24 of 278
Version 1.2

January 27, 2007

ISA support to avoid branch penalties on predictable
branches

The SPU hint-for-branch instructions allow programs to avoid a penalty on taken
branches when the branch can be predicted sufficiently early. This mechanism
achieves an advantage over common branch prediction schemes in that it does
not require storing history associated with previous branches and thus saves
area and power. The ISA solves the problem associated with hint bits in the
branch instructions themselves, where considerable look-ahead (branch scan) in
the instruction stream is necessary to process branches early enough that their
targets are available when needed.

Graphics-oriented single-precision (extended-range)
floating-point support

Much of the code base for game applications assumes a single-precision floating-
point format that is distinct from the IEEE 754 format commonly implemented on
general-purpose processors. For details on the single-precision format, see
Section 9 Floating-Point Instructions on page 195.

Channel architecture

Blocking channels for communication with the synergistic Memory Flow Control-
ler (MFC) or other parts of the system external to the SPU, provide an efficient
mechanism to wait for the completion of external events without polling or inter-
rupts/wait loops, both of which burn power needlessly.

User-only architecture The SPU does not include certain features common in general-purpose
processors. Specifically, the processor does not support a supervisor mode.

Table 1-1. Key Features of the SPU ISA Architecture and Implementation (Page 2 of 2)

Feature Description

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

SPU Architectural Overview

Page 25 of 278

2. SPU Architectural Overview

This section provides an overview of the SPU architecture.

The SPU architecture defines a set of 128 general-purpose registers (GPRs), each of which contains 128
data bits. Registers are used to hold fixed-point and floating-point data. Instructions operate on the full width
of the register, treating the register as multiple operands of the same format.

The SPU supports halfword (16-bit) and word (32-bit) integers in signed format, and it provides limited
support for 8-bit unsigned integers. The number representation is two’s complement.

The SPU supports single-precision (32-bit) and double-precision (64-bit) floating-point data in IEEE 754
format. However, full single-precision IEEE 754 arithmetic is not implemented.

The architecture does not use a condition register. Instead, comparison operations set results that are either
0 (false) or 1 (true), and that are the same width as the operands being compared. These results can be used
for bitwise masking, the select instruction, or conditional branches.

The SPU loads and stores access a private memory called local storage. The SPU loads and stores transfer
quadwords between GPRs and local storage. Implementations can feature varying local storage sizes;
however, the local storage address space is limited to 4 GB.

The SPU can send and receive data to external devices through the channel interface. SPU channel instruc-
tions transfer quadwords (128 bits) between GPRs and the channel interface. Up to 128 channels are
supported. Two channels are defined to access Save-and-Restore Register 0 (SRR0), which holds the
address used by the Interrupt Return instruction (iret). The SPU also supports up to 128 special-purpose
registers (SPRs). The Move To Special Purpose Register (mtspr) and Move From Special Purpose Register
(mfspr) instructions move 128-bit data between GPRs and SPRs.

The SPU also monitors a status signal called the external condition. The Branch Indirect and Set Link If
External Data (bisled) instruction conditionally branches based upon the status of the external condition. The
SPU interrupt facility can be configured to branch to an interrupt handler at address 0 when the external
condition is true.

2.1 Data Representation

The architecture defines the following:

• An 8-bit byte
• A 16-bit halfword
• A 32-bit word
• A 64-bit doubleword
• A 128-bit quadword

Byte ordering defines how the bytes that make up halfwords, words, doublewords, and quadwords are
ordered in memory. The SPU supports most-significant byte (MSB) ordering. With MSB ordering, also called
big endian, the most-significant byte is located in the lowest addressed byte position in a storage unit (byte 0).
Instructions are described in this document as they appear in memory, with successively higher addressed
bytes appearing toward the right.

The conventions for bit and byte numbering within the various width storage units are shown in the figures
listed in Table 2-1.

Instruction Set Architecture

Synergistic Processor Unit

SPU Architectural Overview

Page 26 of 278
Version 1.2

January 27, 2007

These conventions apply to integer and floating-point data (where the most-significant byte holds the sign
and at a minimum the start of the exponent). The figures show byte numbers on the top and bit numbers
below.

Figure 2-1. Bit and Byte Numbering of Halfwords

Figure 2-2. Bit and Byte Numbering of Words

Figure 2-3. Bit and Byte Numbering of Doublewords

Table 2-1. Bit and Byte Numbering Figures

For a figure that shows… See…

Bit and Byte Numbering of Halfwords Figure 2-1 on page 26

Bit and Byte Numbering of Words Figure 2-2 on page 26

Bit and Byte Numbering of Doublewords Figure 2-3 on page 26

Bit and Byte Numbering of Quadwords Figure 2-4 on page 27

Register Layout of Data Types Figure 2-5 on page 28

M
S

b

LS
b

0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
S

b

LS
b

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
S

b

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
LS

b

4 5 6 7

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

SPU Architectural Overview

Page 27 of 278

Figure 2-4. Bit and Byte Numbering of Quadwords

M
S

b

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 5 6 7

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

8 9 10 11

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

LS
b

12 13 14 15

96 97 98 99 100 101 102 103 104 015 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Instruction Set Architecture

Synergistic Processor Unit

SPU Architectural Overview

Page 28 of 278
Version 1.2

January 27, 2007

2.2 Data Layout in Registers

All GPRs are 128 bits wide. The leftmost word (bytes 0, 1, 2, and 3) of a register is called the preferred slot.
When instructions use or produce scalar operands or addresses, the values are in the preferred slot. A set of
store assist instructions is available to help store bytes, halfwords, words, and doublewords. Figure 2-5 illus-
trates how these data types are laid out in a general purpose register (GPR).

2.3 Instruction Formats

There are six basic instruction formats. These instructions are all 32 bits long. Minor variations of these
formats are also used. Instructions in memory must be aligned on word boundaries. The instruction formats
are shown in Figures 2-6 through 2-11.

Note: The OP code field is presented throughout this document in binary format.

Figure 2-6. RR Instruction Format

Figure 2-7. RRR Instruction Format

Figure 2-8. RI7 Instruction Format

Figure 2-5. Register Layout of Data Types

OP RB RA RT

0 10 11 17 18 24 25 31

OP RT RB RA RC

0 3 4 10 11 17 18 24 25 31

OP I7 RA RT

0 10 11 17 18 24 25 31

DOUBLEWORD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BYTE

HALFWORD

ADDRESS

QUADWORD

Byte Index

Registers

Preferred Slot

WORD

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

SPU Architectural Overview

Page 29 of 278

Figure 2-9. RI10 Instruction Format

Figure 2-10. RI16 Instruction Format

Figure 2-11. RI18 Instruction Format

OP I10 RA RT

0 7 8 17 18 24 25 31

OP I16 RT

0 8 9 24 25 31

OP I18 RT

0 6 7 24 25 31

Instruction Set Architecture

Synergistic Processor Unit

SPU Architectural Overview

Page 30 of 278
Version 1.2

January 27, 2007

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Memory—Load/Store Instructions

Page 31 of 278

3. Memory—Load/Store Instructions

This section lists and describes the SPU load/store instructions.

The SPU architecture defines a private memory, also called local storage, which is byte-addressed. Load and
store instructions combine operands from one or two registers and an immediate value to form the effective
address of the memory operand. Only aligned 16-byte-long quadwords can be loaded and stored. Therefore,
the rightmost 4 bits of an effective address are always ignored and are assumed to be zero.

The size of the SPU local storage address space is 232 bytes. However, an implementation generally has a
smaller actual memory size. The effective size of the memory is specified by the Local Storage Limit Register
(LSLR). Implementations can provide methods for accessing the LSLR; however, these methods are outside
the scope of the SPU Instruction Set Architecture. Implementations can allow modifications to the LSLR
value; however, the LSLR must not change while the SPU is running. Every effective address is ANDed with
the LSLR before it is used to reference memory. The LSLR can be used to make the memory appear to be
smaller than it is, thus providing compatibility for programs compiled for a smaller memory size. The LSLR
value is a mask that controls the effective memory size. This value must have the following properties:

• Limit the effective memory size to be less than or equal to the actual memory size

• Be monotonic, so that the least-significant 4 mask bits are ones and so that there is at most a single tran-
sition from ‘1’ to ‘0’ and no transitions from ‘0’ to ‘1’ as the bits are read from the least-significant to the
most-significant bit. That is, the value must be 2n-1, where n is log2 (effective memory size).

The effect of this is that references to memory beyond the last byte of the effective size are wrapped—that is,
interpreted modulo the effective size. This definition allows an address to be used for a load before it has
been checked for validity, and makes it possible to overlap memory latency with other operations more easily.

Stores of less than a quadword are performed by a load-modify-store sequence. A group of assist instructions
is provided for this type of sequence. The assist instruction names are prefixed with Generate Control.
These instructions are described in this section. For example, see Generate Controls for Byte Insertion (d-
form) on page 40.

In a typical system configuration, the SPU local storage is externally accessible. The possibility therefore
exists of SPU memory being modified asynchronously during the course of execution of an SPU program. All
references (loads, stores) to local storage by an SPU program, and aligned external references to SPU
memory, are atomic. Unaligned references are not atomic, and portions of such operations can be observed
by a program executing in the SPU. Table 3-1 shows sample LSLRs and the local storage address space
size they correspond to.

Table 3-1. Example LSLR Values and Corresponding Local Storage Sizes

LSLR Local Storage Size

0x0003 FFFF 256 KB

0x0001 FFFF 128 KB

0x0000 FFFF 64 KB

0x0000 7FFF 32 KB

Instruction Set Architecture

Synergistic Processor Unit

Memory—Load/Store Instructions

Page 32 of 278
Version 1.2

January 27, 2007

Load Quadword (d-form) Required v 1.0

The local storage address is computed by adding the signed value in the I10 field, with 4 zero bits appended,
to the value in the preferred slot of register RA and forcing the rightmost 4 bits of the sum to zero. The 16
bytes at the local storage address are placed into register RT. This instruction is computed using the following
formula:

lqd rt,symbol(ra)

0 0 1 1 0 1 0 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LSA ← (RepLeftBit(I10 || 0b0000,32) + RA0:3) & LSLR & 0xFFFFFFF0

RT ← LocStor(LSA, 16)

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Memory—Load/Store Instructions

Page 33 of 278

Load Quadword (x-form) Required v 1.0

The local storage address is computed by adding the value in the preferred slot of register RA to the value in
the preferred slot of register RB and forcing the rightmost 4 bits of the sum to zero. The 16 bytes at the local
storage address are placed into register RT. This instruction is computed using the following formula:

lqx rt,ra,rb

0 0 1 1 1 0 0 0 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LSA ← (RA0:3 + RB0:3) & LSLR & 0xFFFFFFF0

RT ← LocStor(LSA,16)

Instruction Set Architecture

Synergistic Processor Unit

Memory—Load/Store Instructions

Page 34 of 278
Version 1.2

January 27, 2007

Load Quadword (a-form) Required v 1.0

The value in the I16 field, with 2 zero bits appended and extended on the left with copies of the most-signifi-
cant bit, is used as the local storage address. The 16 bytes at the local storage address are loaded into
register RT.

lqa rt,symbol

0 0 1 1 0 0 0 0 1 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LSA ← RepLeftBit(I16 || 0b00,32) & LSLR & 0xFFFFFFF0

RT ← LocStor(LSA,16)

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Memory—Load/Store Instructions

Page 35 of 278

Load Quadword Instruction Relative (a-form) Required v 1.0

The value in the I16 field, with 2 zero bits appended, is added to the program counter (PC) to form the local
storage address. The 16 bytes at the local storage address are loaded into register RT.

lqr rt,symbol

0 0 1 1 0 0 1 1 1 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LSA ← (RepLeftBit(I16 || 0b00,32) + PC) & LSLR & 0xFFFFFFF0

RT ← LocStor(LSA,16)

Instruction Set Architecture

Synergistic Processor Unit

Memory—Load/Store Instructions

Page 36 of 278
Version 1.2

January 27, 2007

Store Quadword (d-form) Required v 1.0

The local storage address is computed by adding the signed value in the I10 field, with 4 zero bits appended,
to the value in the preferred slot of register RA and forcing the rightmost 4 bits of the sum to zero. The
contents of register RT are stored at the local storage address.

stqd rt,symbol(ra)

0 0 1 0 0 1 0 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LSA ← (RepLeftBit(I10 || 0b0000,32) + RA0:3) & LSLR & 0xFFFFFFF0

LocStor(LSA,16) ← RT

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Memory—Load/Store Instructions

Page 37 of 278

Store Quadword (x-form) Required v 1.0

The local storage address is computed by adding the value in the preferred slot of register RA to the value in
the preferred slot of register RB and forcing the rightmost 4 bits of the sum to zero. The contents of
register RT are stored at the local storage address.

stqx rt,ra,rb

0 0 1 0 1 0 0 0 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LSA ← (RA0:3 + RB0:3) & LSLR & 0xFFFFFFF0

LocStor(LSA,16) ← RT

Instruction Set Architecture

Synergistic Processor Unit

Memory—Load/Store Instructions

Page 38 of 278
Version 1.2

January 27, 2007

Store Quadword (a-form) Required v 1.0

The value in the I16 field, with 2 zero bits appended and extended on the left with copies of the most-signifi-
cant bit, is used as the local storage address. The contents of register RT are stored at the location given by
the local storage address.

stqa rt,symbol

0 0 1 0 0 0 0 0 1 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LSA ← RepLeftBit(I16 || 0b00,32) & LSLR & 0xFFFFFFF0

LocStor(LSA,16) ← RT

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Memory—Load/Store Instructions

Page 39 of 278

Store Quadword Instruction Relative (a-form) Required v 1.0

The value in the I16 field, with two zero bits appended and extended on the left with copies of the most-signif-
icant bit, is added to the program counter (PC) to form the local storage address. The contents of register RT
are stored at the location given by the local storage address.

stqr rt,symbol

0 0 1 0 0 0 1 1 1 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LSA ← (RepLeftBit(I16 || 0b00,32) + PC) & LSLR & 0xFFFFFFF0

LocStor(LSA,16) ← RT

Instruction Set Architecture

Synergistic Processor Unit

Memory—Load/Store Instructions

Page 40 of 278
Version 1.2

January 27, 2007

Generate Controls for Byte Insertion (d-form) Required v 1.0

A 4-bit address is computed by adding the value in the signed I7 field to the value in the preferred slot of
register RA. The address is used to determine the position of the addressed byte within a quadword. Based
on the position, a mask is generated that can be used with the Shuffle Bytes (shufb) instruction to insert a
byte at the indicated position within a (previously loaded) quadword. The byte is taken from the rightmost byte
position of the preferred slot of the RA operand of the shufb instruction. See Appendix B Details of the
Generate Controls Instructions on page 265 for the details of the created mask.

cbd rt,symbol(ra)

0 0 1 1 1 1 1 0 1 0 0 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← (RA0:3 + RepLeftBit(I7,32)) & 0x0000000F

RT ← 0x101112131415161718191A1B1C1D1E1F

RTt ← 0x03

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Memory—Load/Store Instructions

Page 41 of 278

Generate Controls for Byte Insertion (x-form) Required v 1.0

A 4-bit address is computed by adding the value in the preferred slot of register RA to the value in the
preferred slot of register RB. The address is used to determine the position of the addressed byte within a
quadword. Based on the position, a mask is generated that can be used with the shufb instruction to insert a
byte at the indicated position within a (previously loaded) quadword. The byte is taken from the rightmost byte
position of the preferred slot of the RA operand of the shufb instruction. See Appendix B Details of the
Generate Controls Instructions on page 265 for the details of the created mask.

cbx rt,ra,rb

0 0 1 1 1 0 1 0 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← (RA0:3 + RB0:3) & 0x0000000F

RT ← 0x101112131415161718191A1B1C1D1E1F

RTt ← 0x03

Instruction Set Architecture

Synergistic Processor Unit

Memory—Load/Store Instructions

Page 42 of 278
Version 1.2

January 27, 2007

Generate Controls for Halfword Insertion (d-form) Required v 1.0

A 4-bit address is computed by adding the value in the signed I7 field to the value in the preferred slot of
register RA and forcing the least-significant bit to zero. The address is used to determine the position of an
aligned halfword within a quadword. Based on the position, a mask is generated that can be used with the
shufb instruction to insert a halfword at the indicated position within a quadword. The halfword is taken from
the rightmost 2 bytes of the preferred slot of the RA operand of the shufb instruction. See Appendix B Details
of the Generate Controls Instructions on page 265 for the details of the created mask.

chd rt,symbol(ra)

0 0 1 1 1 1 1 0 1 0 1 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← (RA0:3 + RepLeftBit(I7,32)) & 0x0000000E

RT ← 0x101112131415161718191A1B1C1D1E1F

RTt::2 ← 0x0203

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Memory—Load/Store Instructions

Page 43 of 278

Generate Controls for Halfword Insertion (x-form) Required v 1.0

A 4-bit address is computed by adding the value in the preferred slot of register RA to the value in the
preferred slot of register RB and forcing the least-significant bit to zero. The address is used to determine the
position of an aligned halfword within a quadword. Based on the position, a mask is generated that can be
used with the shufb instruction to insert a halfword at the indicated position within a quadword. The halfword
is taken from the rightmost 2 bytes of the preferred slot of the RA operand of the shufb instruction. See
Appendix B Details of the Generate Controls Instructions on page 265 for the details of the created mask.

chx rt,ra,rb

0 0 1 1 1 0 1 0 1 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← (RA0:3 + RB0:3) & 0x0000000E

RT ← 0x101112131415161718191A1B1C1D1E1F

RTt::2 ← 0x0203

Instruction Set Architecture

Synergistic Processor Unit

Memory—Load/Store Instructions

Page 44 of 278
Version 1.2

January 27, 2007

Generate Controls for Word Insertion (d-form) Required v 1.0

A 4-bit address is computed by adding the value in the signed I7 field to the value in the preferred slot of
register RA and forcing the least-significant 2 bits to zero. The address is used to determine the position of an
aligned word within a quadword. Based on the position, a mask is generated that can be used with the shufb
instruction to insert a word at the indicated position within a quadword. The word is taken from the preferred
slot of the RA operand of the shufb instruction. See Appendix B Details of the Generate Controls Instructions
on page 265 for the details of the created mask.

cwd rt,symbol(ra)

0 0 1 1 1 1 1 0 1 1 0 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← (RA0:3 + RepLeftBit(I7,32)) & 0x0000000C

RT ← 0x101112131415161718191A1B1C1D1E1F

RTt::4 ← 0x00010203

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Memory—Load/Store Instructions

Page 45 of 278

Generate Controls for Word Insertion (x-form) Required v 1.0

A 4-bit address is computed by adding the value in the preferred slot of register RA to the value in the
preferred slot of register RB and forcing the least-significant 2 bits to zero. The address is used to determine
the position of an aligned word within a quadword. Based on the position, a mask is generated that can be
used with the shufb instruction to insert a word at the indicated position within a quadword. The word is taken
from the preferred slot of the RA operand of the shufb instruction. See Appendix B Details of the Generate
Controls Instructions on page 265 for the details of the created mask.

cwx rt,ra,rb

0 0 1 1 1 0 1 0 1 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← (RA0:3 + RB0:3) & 0x0000000C

RT ← 0x101112131415161718191A1B1C1D1E1F

RTt::4 ← 0x00010203

Instruction Set Architecture

Synergistic Processor Unit

Memory—Load/Store Instructions

Page 46 of 278
Version 1.2

January 27, 2007

Generate Controls for Doubleword Insertion (d-form) Required v 1.0

A 4-bit address is computed by adding the value in the signed I7 field to the value in the preferred slot of
register RA and forcing the least-significant 3 bits to zero. The address is used to determine the position of an
aligned doubleword within a quadword. Based on the position, a mask is generated that can be used with the
shufb instruction to insert a doubleword at the indicated position within a quadword. The doubleword is taken
from the leftmost 8 bytes of the RA operand of the shufb instruction. See Appendix B Details of the Generate
Controls Instructions on page 265 for the details of the created mask.

cdd rt,symbol(ra)

0 0 1 1 1 1 1 0 1 1 1 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← (RA0:3 + RepLeftBit(I7,32)) & 0x00000008

RT ← 0x101112131415161718191A1B1C1D1E1F

RTt::8 ← 0x0001020304050607

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Memory—Load/Store Instructions

Page 47 of 278

Generate Controls for Doubleword Insertion (x-form) Required v 1.0

A 4-bit address is computed by adding the value in the preferred slot of register RA to the value in the
preferred slot of register RB and forcing the least-significant 3 bits to zero. The address is used to determine
the position of the addressed doubleword within a quadword. Based on the position, a mask is generated that
can be used with the shufb instruction to insert a doubleword at the indicated position within a quadword. The
quadword is taken from the leftmost 8 bytes of the RA operand of the shufb instruction. See
Appendix B Details of the Generate Controls Instructions on page 265 for the details of the created mask.

cdx rt,ra,rb

0 0 1 1 1 0 1 0 1 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← (RA0:3 + RB0:3) & 0x00000008

RT ← 0x101112131415161718191A1B1C1D1E1F

RTt::8 ← 0x0001020304050607

Instruction Set Architecture

Synergistic Processor Unit

Memory—Load/Store Instructions

Page 48 of 278
Version 1.2

January 27, 2007

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Constant-Formation Instructions

Page 49 of 278

4. Constant-Formation Instructions

This section lists and describes the SPU constant-formation instructions.

Instruction Set Architecture

Synergistic Processor Unit

Constant-Formation Instructions

Page 50 of 278
Version 1.2

January 27, 2007

Immediate Load Halfword Required v 1.0

For each of eight halfword slots:

• The value in the I16 field is placed in register RT.

Programming Note: There is no Immediate Load Byte instruction. However, that function can be performed
by the ilh instruction with a suitable value in the I16 field.

ilh rt,symbol

0 1 0 0 0 0 0 1 1 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← I16

RT0:1 ← s

RT2:3 ← s

RT4:5 ← s

RT6:7 ← s

RT8:9 ← s

RT10:11 ← s

RT12:13 ← s

RT14:15 ← s

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Constant-Formation Instructions

Page 51 of 278

Immediate Load Halfword Upper Required v 1.0

For each of four word slots:

• The value in the I16 field is placed in the leftmost 16 bits of the word.

• The remaining bits of the word are set to zero.

Programming Note: This instruction, when used in conjunction with Immediate Or Halfword Lower (iohl),
can be used to form an arbitrary 32-bit value in each word slot of a register. It can also be used alone to load
an immediate floating-point constant with up to 7 bits of significance in its fraction.

ilhu rt,symbol

0 1 0 0 0 0 0 1 0 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← I16 || 0x0000

RT0:3 ← t

RT4:7 ← t

RT8:11 ← t

RT12:15 ← t

Instruction Set Architecture

Synergistic Processor Unit

Constant-Formation Instructions

Page 52 of 278
Version 1.2

January 27, 2007

Immediate Load Word Required v 1.0

For each of four word slots:

• The value in the I16 field is expanded to 32 bits by replicating the leftmost bit.

• The resulting value is placed in register RT.

il rt,symbol

0 1 0 0 0 0 0 0 1 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I16,32)

RT0:3 ← t

RT4:7 ← t

RT8:11 ← t

RT12:15 ← t

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Constant-Formation Instructions

Page 53 of 278

Immediate Load Address Required v 1.0

For each of four word slots:

• The value in the I18 field is placed unchanged in the rightmost 18 bits of register RT.

• The remaining bits of register RT are set to zero.

Programming Note: Immediate Load Address can be used to load an immediate value, such as an address
or a small constant, without sign extension.

ila rt,symbol

0 1 0 0 0 0 1 I18 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← 140 || I18

RT0:3 ← t

RT4:7 ← t

RT8:11 ← t

RT12:15 ← t

Instruction Set Architecture

Synergistic Processor Unit

Constant-Formation Instructions

Page 54 of 278
Version 1.2

January 27, 2007

Immediate Or Halfword Lower Required v 1.0

For each of four word slots:

• The value in the I16 field is prefaced with zeros and ORed with the value in register RT.

• The result is placed into register RT.

Programming Note: Immediate Or Halfword Lower can be used in conjunction with Immediate Load Half-
word Upper to load a 32-bit immediate value.

iohl rt,symbol

0 1 1 0 0 0 0 0 1 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← 0x0000 || I16

RT0:3 ← RT0:3 | t

RT4:7 ← RT4:7 | t

RT8:11 ← RT8:11 | t

RT12:15 ← RT12:15 | t

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Constant-Formation Instructions

Page 55 of 278

Form Select Mask for Bytes Immediate Required v 1.0

The I16 field is used to create a mask in register RT by making eight copies of each bit. Bits in the operand
are related to bytes in the result in a left-to-right correspondence.

Programming Note: This instruction can be used to create a mask for use with the Select Bits instruction. It
can also be used to create masks for halfwords, words, and doublewords.

fsmbi rt,symbol

0 0 1 1 0 0 1 0 1 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← I16
for j = 0 to 15

If sj
 = 0 then rj ← 0x00

else rj ← 0xFF
end
RT ← r

Instruction Set Architecture

Synergistic Processor Unit

Constant-Formation Instructions

Page 56 of 278
Version 1.2

January 27, 2007

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 57 of 278

5. Integer and Logical Instructions

This section lists and describes the SPU integer and logical instructions.

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 58 of 278
Version 1.2

January 27, 2007

Add Halfword Required v 1.0

For each of eight halfword slots:

• The operand from register RA is added to the operand from register RB.

• The 16-bit result is placed in RT.

• Overflows and carries are not detected.

ah rt,ra,rb

0 0 0 1 1 0 0 1 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:1 ← RA0:1 + RB0:1

RT2:3 ← RA2:3 + RB2:3

RT4:5 ← RA4:5 + RB4:5

RT6:7 ← RA6:7 + RB6:7

RT8:9 ← RA8:9 + RB8:9

RT10:11 ← RA10:11 + RB10:11

RT12:13 ← RA12:13 + RB12:13

RT14:15 ← RA14:15 + RB14:15

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 59 of 278

Add Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The signed value in the I10 field is added to the value in register RA.

• The 16-bit result is placed in RT.

• Overflows and carries are not detected.

ahi rt,ra,value

0 0 0 1 1 1 0 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RepLeftBit(I10,16)

RT0:1 ← RA0:1 + s

RT2:3 ← RA2:3 + s

RT4:5 ← RA4:5 + s

RT6:7 ← RA6:7 + s

RT8:9 ← RA8:9 + s

RT10:11 ← RA10:11 + s

RT12:13 ← RA12:13+ s

RT14:15 ← RA14:15 + s

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 60 of 278
Version 1.2

January 27, 2007

Add Word Required v 1.0

For each of four word slots:

• The operand from register RA is added to the operand from register RB.

• The 32-bit result is placed in register RT.

• Overflows and carries are not detected.

a rt,ra,rb

0 0 0 1 1 0 0 0 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:3 + RB0:3

RT4:7 ← RA4:7 + RB4:7

RT8:11 ← RA8:11 + RB8:11

RT12:15 ← RA12:15 + RB12:15

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 61 of 278

Add Word Immediate Required v 1.0

For each of four word slots:

• The signed value in the I10 field is added to the operand in register RA.

• The 32-bit result is placed in register RT.

• Overflows and carries are not detected.

ai rt,ra,value

0 0 0 1 1 1 0 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I10,32)

RT0:3 ← RA0:3 + t

RT4:7 ← RA4:7 + t

RT8:11 ← RA8:11 + t

RT12:15 ← RA12:15 + t

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 62 of 278
Version 1.2

January 27, 2007

Subtract from Halfword Required v 1.0

For each of eight halfword slots:

• The value in register RA is subtracted from the value in RB.

• The 16-bit result is placed in register RT.

• Overflows and carries are not detected.

sfh rt,ra,rb

0 0 0 0 1 0 0 1 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:1 ← RB0:1 + (¬RA0:1) + 1

RT2:3 ← RB2:3 + (¬RA2:3) + 1

RT4:5 ← RB4:5 + (¬RA4:5) + 1

RT6:7 ← RB6:7 + (¬RA6:7) + 1

RT8:9 ← RB8:9 + (¬RA8:9) + 1

RT10:11 ← RB10:11 + (¬RA10:11) + 1

RT12:13 ← RB12:13 + (¬RA12:13) + 1

RT14:15 ← RB14:15 + (¬RA14:15) + 1

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 63 of 278

Subtract from Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The value in register RA is subtracted from the signed value in the I10 field.

• The 16-bit result is placed in register RT.

• Overflows are not detected.

Programming Note: Although there is no Subtract Halfword Immediate instruction, its effect can be achieved
by using the Add Halfword Immediate with a negative immediate field.

sfhi rt,ra,value

0 0 0 0 1 1 0 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I10,16)

RT0:1 ← t + (¬RA0:1) + 1

RT2:3 ← t + (¬RA2:3) + 1

RT4:5 ← t + (¬RA4:5) + 1

RT6:7 ← t + (¬RA6:7) + 1

RT8:9 ← t + (¬RA8:9) + 1

RT10:11 ← t + (¬RA10:11) + 1

RT12:13 ← t + (¬RA12:13) + 1

RT14:15 ← t + (¬RA14:15) + 1

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 64 of 278
Version 1.2

January 27, 2007

Subtract from Word Required v 1.0

For each of four word slots:

• The value in register RA is subtracted from the value in register RB.

• The result is placed in register RT.

• Overflows and carries are not detected.

sf rt,ra,rb

0 0 0 0 1 0 0 0 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RB0:3 + (¬RA0:3) + 1

RT4:7 ← RB4:7 + (¬RA4:7) + 1

RT8:11 ← RB8:11 + (¬RA8:11) + 1

RT12:15 ← RB12:15 + (¬RA12:15) + 1

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 65 of 278

Subtract from Word Immediate Required v 1.0

For each of four word slots:

• The value in register RA is subtracted from the value in the I10 field.

• The result is placed in register RT.

• Overflows and carries are not detected.

Programming Note: Although there is no Subtract Immediate instruction, its effect can be achieved by using
the Add Immediate with a negative immediate field.

sfi rt,ra,value

0 0 0 0 1 1 0 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I10,32)

RT0:3 ← t + (¬RA0:3) + 1

RT4:7 ← t + (¬RA4:7) + 1

RT8:11 ← t + (¬RA8:11) + 1

RT12:15 ← t + (¬RA12:15) + 1

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 66 of 278
Version 1.2

January 27, 2007

Add Extended Required v 1.0

For each of four word slots:

• The operand from register RA is added to the operand from register RB and the least-significant bit of the
operand from register RT.

• The 32-bit result is placed in register RT. Bits 0 to 30 of the RT input are reserved and should be zero.

addx rt,ra,rb

0 1 1 0 1 0 0 0 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:3 + RB0:3 + RT31

RT4:7 ← RA4:7 + RB4:7 + RT63

RT8:11 ← RA8:11 + RB8:11 + RT95

RT12:15 ← RA12:15 + RB12:15 + RT127

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 67 of 278

Carry Generate Required v 1.0

For each of four word slots:

• The operand from register RA is added to the operand from register RB.

• The carry-out is placed in the least-significant bit of register RT.

• The remaining bits of RT are set to zero.

cg rt,ra,rb

0 0 0 1 1 0 0 0 0 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 4
t0:32 = ((0 || RAj::4) + (0 || RBj::4))
RTj::4 ← 310 || t0

end

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 68 of 278
Version 1.2

January 27, 2007

Carry Generate Extended Required v 1.0

For each of four word slots:

• The operand from register RA is added to the operand from register RB and the least-significant bit of
register RT.

• The carry-out is placed in the least-significant bit of register RT.

• The remaining bits of RT are set to zero. Bits 0 to 30 of the RT input are reserved and should be zero.

cgx rt,ra,rb

0 1 1 0 1 0 0 0 0 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 4
t0:32 = (0 || RAj::4) + (0 || RBj::4) + (320 || RTj * 8 + 31)
RTj::4 ← 310 || t0

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 69 of 278

Subtract from Extended Required v 1.0

For each of four word slots:

• The operand from register RA is subtracted from the operand from register RB. An additional ‘1’ is sub-
tracted from the result if the least-significant bit of RT is ‘0’.

• The 32-bit result is placed in register RT. Bits 0 to 30 of the RT input are reserved and should be zero.

sfx rt,ra,rb

0 1 1 0 1 0 0 0 0 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RB0:3 + (¬RA0:3) + RT31

RT4:7 ← RB4:7 + (¬RA4:7) + RT63

RT8:11 ← RB8:11 + (¬RA8:11) + RT95

RT12:15 ← RB12:15 + (¬RA12:15) + RT127

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 70 of 278
Version 1.2

January 27, 2007

Borrow Generate Required v 1.0

For each of four word slots:

• If the unsigned value of RA is greater than the unsigned value of RB, then ‘0’ is placed in register RT. Oth-
erwise, ‘1’ is placed in register RT.

bg rt,ra,rb

0 0 0 0 1 0 0 0 0 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 4
if (RBj::4 ≥u RAj::4) then RTj::4 ← 1
else RTj::4 ← 0

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 71 of 278

Borrow Generate Extended Required v 1.0

For each of four word slots:

• The operand from register RA is subtracted from the operand from register RB. An additional ‘1’ is sub-
tracted from the result if the least-significant bit of RT is ‘0’. If the result is less than zero, a ‘0’ is placed in
register RT. Otherwise, register RT is set to ‘1’. Bits 0 to 30 of the RT input are reserved and should be
zero.

bgx rt,ra,rb

0 1 1 0 1 0 0 0 0 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 4
if (RTj * 8 + 31) then

if (RBj::4 ≥u RAj::4) then RTj::4 ← 1
else RTj::4 ← 0

else
if (RBj::4 >u RAj::4) then RTj::4 ← 1
else RTj::4 ← 0

end

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 72 of 278
Version 1.2

January 27, 2007

Multiply Required v 1.0

For each of four word slots:

• The value in the rightmost 16 bits of register RA is multiplied by the value in the rightmost 16 bits of regis-
ter RB.

• The 32-bit product is placed in register RT.

• The leftmost 16 bits of each operand are ignored.

mpy rt,ra,rb

0 1 1 1 1 0 0 0 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA2:3 * RB2:3

RT4:7 ← RA6:7 * RB6:7

RT8:11 ← RA10:11 * RB10:11

RT12:15 ← RA14:15 * RB14:15

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 73 of 278

Multiply Unsigned Required v 1.0

For each of four word slots:

• The rightmost 16 bits of register RA are multiplied by the rightmost 16 bits of register RB, treating both
operands as unsigned.

• The 32-bit product is placed in register RT.

mpyu rt,ra,rb

0 1 1 1 1 0 0 1 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA2:3 |*| RB2:3

RT4:7 ← RA6:7 |*| RB6:7

RT8:11 ← RA10:11 |*| RB10:11

RT12:15 ← RA14:15 |*| RB14:15

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 74 of 278
Version 1.2

January 27, 2007

Multiply Immediate Required v 1.0

For each of four word slots:

• The signed value in the I10 field is multiplied by the value in the rightmost 16 bits of register RA.

• The resulting product is placed in register RT.

mpyi rt,ra,value

0 1 1 1 0 1 0 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I10,16)

RT0:3 ← RA2:3 * t

RT4:7 ← RA6:7 * t

RT8:11 ← RA10:11 * t

RT12:15 ← RA14:15 * t

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 75 of 278

Multiply Unsigned Immediate Required v 1.0

For each of four word slots:

• The signed value in the I10 field is extended to 16 bits by replicating the leftmost bit. The resulting value is
multiplied by the rightmost 16 bits of register RA, treating both operands as unsigned.

• The resulting product is placed in register RT.

mpyui rt,ra,value

0 1 1 1 0 1 0 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I10,16)

RT0:3 ← RA2:3 |*| t

RT4:7 ← RA6:7 |*| t

RT8:11 ← RA10:11 |*| t

RT12:15 ← RA14:15 |*| t

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 76 of 278
Version 1.2

January 27, 2007

Multiply and Add Required v 1.0

For each of four word slots:

• The value in register RA is treated as a 16-bit signed integer and multiplied by the 16-bit signed value in
register RB. The resulting product is added to the value in register RC.

• The result is placed in register RT.

• Overflows and carries are not detected.

Programming Note: The operands are right-aligned within the 32-bit field.

mpya rt,ra,rb,rc

1 1 0 0 RT RB RA RC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t0 ← RA2:3 * RB2:3

t1 ← RA6:7 * RB6:7

t2 ← RA10:11 * RB10:11

t3 ← RA14:15 * RB14:15

RT0:3 ← t0 + RC0:3

RT4:7 ← t1 + RC4:7

RT8:11 ← t2 + RC8:11

RT12:15 ← t3 + RC12:15

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 77 of 278

Multiply High Required v 1.0

For each of four word slots:

• The leftmost 16 bits of the value in register RA are shifted right by 16 bits and multiplied by the 16-bit
value in register RB.

• The product is shifted left by 16 bits and placed in register RT. Bits shifted out at the left are discarded.
Zeros are shifted in at the right.

Programming Note: This instruction can be used in conjunction with mpyu and Add Word (a) to perform a
32-bit multiply. A 32-bit multiply instruction, mpy32 rt,ra,rb, can be emulated with the following instruction
sequence:

mpyh t1,ra,rb
mpyh t2,rb,ra
mpyu t3,ra,rb
a rt,t1,t2
a rt,rt,t3

mpyh rt,ra,rb

0 1 1 1 1 0 0 0 1 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t0 ← RA0:1 * RB2:3

t1 ← RA4:5 * RB6:7

t2 ← RA8:9 * RB10:11

t3 ← RA12:13 * RB14:15

RT0:3 ← t02:3 || 0x0000

RT4:7 ← t12:3 || 0x0000

RT8:11 ← t22:3 || 0x0000

RT12:15 ← t32:3 || 0x0000

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 78 of 278
Version 1.2

January 27, 2007

Multiply and Shift Right Required v 1.0

For each of four word slots:

• The value in the rightmost 16 bits of register RA is multiplied by the value in the rightmost 16 bits of regis-
ter RB.

• The leftmost 16 bits of the 32-bit product are placed in the rightmost 16 bits of register RT, with the sign
bit replicated into the left 16 bits of the register.

mpys rt,ra,rb

0 1 1 1 1 0 0 0 1 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t0 ← RA2:3 * RB2:3

t1 ← RA6:7 * RB6:7

t2 ← RA10:11 * RB10:11

t3 ← RA14:15 * RB14:15

RT0:3 ← RepLeftBit(t00:1,32)

RT4:7 ← RepLeftBit(t10:1,32)

RT8:11 ← RepLeftBit(t20:1,32)

RT12:15 ← RepLeftBit(t30:1,32)

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 79 of 278

Multiply High High Required v 1.0

For each of four word slots:

• The leftmost 16 bits in register RA are multiplied by the leftmost 16 bits in register RB.

• The 32-bit product is placed in register RT.

mpyhh rt,ra,rb

0 1 1 1 1 0 0 0 1 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:1 * RB0:1

RT4:7 ← RA4:5 * RB4:5

RT8:11 ← RA8:9 * RB8:9

RT12:15 ← RA12:13 * RB12:13

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 80 of 278
Version 1.2

January 27, 2007

Multiply High High and Add Required v 1.0

For each of four word slots:

• The leftmost 16 bits in register RA are multiplied by the leftmost 16 bits in register RB. The product is
added to the value in register RT.

• The sum is placed in register RT.

mpyhha rt,ra,rb

0 1 1 0 1 0 0 0 1 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:1 * RB0:1 + RT0:3

RT4:7 ← RA4:5 * RB4:5 + RT4:7

RT8:11 ← RA8:9 * RB8:9+ RT8:11

RT12:15 ← RA12:13 * RB12:13 + RT12:15

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 81 of 278

Multiply High High Unsigned Required v 1.0

For each of four word slots:

• The leftmost 16 bits in register RA are multiplied by the leftmost 16 bits in register RB, treating both oper-
ands as unsigned.

• The 32-bit product is placed in register RT.

mpyhhu rt,ra,rb

0 1 1 1 1 0 0 1 1 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:1 |*| RB0:1

RT4:7 ← RA4:5 |*| RB4:5

RT8:11 ← RA8:9 |*| RB8:9

RT12:15 ← RA12:13 |*| RB12:13

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 82 of 278
Version 1.2

January 27, 2007

Multiply High High Unsigned and Add Required v 1.0

For each of four word slots:

• The leftmost 16 bits in register RA are multiplied by the leftmost 16 bits in register RB, treating both oper-
ands as unsigned. The product is added to the value in register RT.

• The sum is placed in register RT.

mpyhhau rt,ra,rb

0 1 1 0 1 0 0 1 1 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:1 |*| RB0:1 + RT0:3

RT4:7 ← RA4:5 |*| RB4:5 + RT4:7

RT8:11 ← RA8:9 |*| RB8:9+ RT8:11

RT12:15 ← RA12:13 |*| RB12:13 + RT12:15

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 83 of 278

Count Leading Zeros Required v 1.0

For each of four word slots:

• The number of zero bits to the left of the first ‘1’ bit in the operand in register RA is computed.

• The result is placed in register RT. If register RA is zero, the result is 32.

Programming Note: The result placed in register RT satisfies 0 ≤ RT ≤ 32. The value in register RT is zero,
for example, if the corresponding slot in RA is a negative integer. The value in register RT is 32 if the corre-
sponding slot in register RA is zero.

clz rt,ra

0 1 0 1 0 1 0 0 1 0 1 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 4
t ← 0
u ← RAj::4

For m = 0 to 31
If um = 1 then leave
t ← t + 1

end
RTj::4 ← t

end

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 84 of 278
Version 1.2

January 27, 2007

Count Ones in Bytes Required v 1.0

For each of 16 byte slots:

• The number of bits in register RA whose value is ‘1’ is computed.

• The result is placed in register RT.

Programming Note: The result placed in register RT satisfies 0 ≤ RT ≤ 8. The value in register RT is zero, for
example, if the value in RA is zero. The value in RT is 8 if the value in RA is -1.

(See also the Form Select Mask for Bytes instruction on page 85.)

cntb rt,ra

0 1 0 1 0 1 1 0 1 0 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15
c = 0
b ← RAj

For m = 0 to 7
If bm = 1 then c ← c + 1

end
RTj ← c

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 85 of 278

Form Select Mask for Bytes Required v 1.0

The rightmost 16 bits of the preferred slot of register RA are used to create a mask in register RT by
replicating each bit eight times. Bits in the operand are related to bytes in the result in a left-to-right
correspondence.

fsmb rt,ra

0 0 1 1 0 1 1 0 1 1 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RA2:3
for j = 0 to 15

If sj
 = 0 then rj ← 0x00

else rj ← 0xFF
end
RT ← r

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 86 of 278
Version 1.2

January 27, 2007

Form Select Mask for Halfwords Required v 1.0

The rightmost 8 bits of the preferred slot of register RA are used to create a mask in register RT by replicating
each bit 16 times. Bits in the operand are related to halfwords in the result, in a left-to-right correspondence.

fsmh rt,ra

0 0 1 1 0 1 1 0 1 0 1 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RA3
k = 0
for j = 0 to 7

If sj
 = 0 then rk::2 ← 0x0000

else rk::2 ← 0xFFFF
k = k + 2

end
RT ← r

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 87 of 278

Form Select Mask for Words Required v 1.0

The rightmost 4 bits of the preferred slot of register RA are used to create a mask in register RT by replicating
each bit 32 times. Bits in the operand are related to words in the result in a left-to-right correspondence.

fsm rt,ra

0 0 1 1 0 1 1 0 1 0 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RA28:31
k = 0
for j = 0 to 3

If sj
 = 0 then rk::4 ← 0x00000000

else rk::4 ← 0xFFFFFFFF
k = k + 4

end
RT ← r

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 88 of 278
Version 1.2

January 27, 2007

Gather Bits from Bytes Required v 1.0

A 16-bit quantity is formed in the right half of the preferred slot of register RT by concatenating the rightmost
bit in each byte of register RA. The leftmost 16 bits of register RT are set to zero, as are the remaining slots of
register RT.

gbb rt,ra

0 0 1 1 0 1 1 0 0 1 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

k = 0
s = 0
for j = 7 to 128 by 8

sk ← RAj
k = k + 1

end
RT0:3 ← 0x0000 || s
RT4:7 ← 0
RT8:11 ← 0
RT12:15 ← 0

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 89 of 278

Gather Bits from Halfwords Required v 1.0

An 8-bit quantity is formed in the rightmost byte of the preferred slot of register RT by concatenating the right-
most bit in each halfword of register RA. The leftmost 24 bits of the preferred slot of register RT are set to
zero, as are the remaining slots of register RT.

gbh rt,ra

0 0 1 1 0 1 1 0 0 0 1 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

k ← 0
s ← 0x00
for j = 15 to 128 by 16

sk ←RAj
k ← k + 1

end
RT0:3 ← 0x000000 || s
RT4:7 ← 0
RT8:11 ← 0
RT12:15 ← 0

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 90 of 278
Version 1.2

January 27, 2007

Gather Bits from Words Required v 1.0

A 4-bit quantity is formed in the rightmost 4 bits of register RT by concatenating the rightmost bit in each word
of register RA. The leftmost 28 bits of register RT are set to zero, as are the remaining slots of register RT.

gb rt,ra

0 0 1 1 0 1 1 0 0 0 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

k = 0
s = 0x0
for j = 31 to 128 by 32

sk ← RAj
k ← k +1

end
RT0:3 ← 0x0000000 || s
RT4:7 ← 0
RT8:11 ← 0
RT12:15 ← 0

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 91 of 278

Average Bytes Required v 1.0

For each of 16 byte slots:

• The operand from register RA is added to the operand from register RB, and ‘1’ is added to the result.
These additions are done without loss of precision.

• That result is shifted to the right by 1 bit and placed in register RT.

avgb rt,ra,rb

0 0 0 1 1 0 1 0 0 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15
RTj ← ((0x00 || RAj) + (0x00 || RBj) + 1)7:14

end

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 92 of 278
Version 1.2

January 27, 2007

Absolute Differences of Bytes Required v 1.0

For each of 16 byte slots:

• The operand in register RA is subtracted from the operand in register RB.

• The absolute value of the result is placed in register RT.

Programming Note: The operands are unsigned.

absdb rt,ra,rb

0 0 0 0 1 0 1 0 0 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15
if (RBj >u RAj) then RTj ← RBj - RAj

else RTj ← RAj - RBj

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 93 of 278

Sum Bytes into Halfwords Required v 1.0

For each of four word slots:

• The 4 bytes in register RB are added, and the 16-bit result is placed in bytes 0 and 1 of register RT.

• The 4 bytes in register RA are added, and the 16-bit result is placed in bytes 2 and 3 of register RT.

Programming Note: The operands are unsigned.

sumb rt,ra,rb

0 1 0 0 1 0 1 0 0 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:1 ← RB0 + RB1+ RB2 + RB3

RT2:3 ← RA0 + RA1+ RA2 + RA3

RT4:5 ← RB4 + RB5+ RB6 + RB7

RT6:7 ← RA4 + RA5+ RA6 + RA7

RT8:9 ← RB8 + RB9+ RB10 + RB11

RT10:11 ← RA8 + RA9+ RA10 + RA11

RT12:13 ← RB12 + RB13+ RB14 + RB15

RT14:15 ← RA12 + RA13+ RA14 + RA15

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 94 of 278
Version 1.2

January 27, 2007

Extend Sign Byte to Halfword Required v 1.0

For each of eight halfword slots:

• The sign of the byte in the right byte of the operand in register RA is propagated to the left byte.

• The resulting 16-bit integer is stored in register RT.

Programming Note: This is the only instruction that treats bytes as signed.

xsbh rt,ra

0 1 0 1 0 1 1 0 1 1 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:1 ← RepLeftBit(RA1,16)

RT2:3 ← RepLeftBit(RA3,16)

RT4:5 ← RepLeftBit(RA5,16)

RT6:7 ← RepLeftBit(RA7,16)

RT8:9 ← RepLeftBit(RA9,16)

RT10:11 ← RepLeftBit(RA11,16)

RT12:13 ← RepLeftBit(RA13,16)

RT14:15 ← RepLeftBit(RA15,16)

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 95 of 278

Extend Sign Halfword to Word Required v 1.0

For each of four word slots:

• The sign of the halfword in the right half of the operand in register RA is propagated to the left halfword.

• The resulting 32-bit integer is placed in register RT.

xshw rt,ra

0 1 0 1 0 1 0 1 1 1 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RepLeftBit(RA2:3,32)

RT4:7 ← RepLeftBit(RA6:7,32)

RT8:11 ← RepLeftBit(RA10:11,32)

RT12:15 ← RepLeftBit(RA14:15,32)

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 96 of 278
Version 1.2

January 27, 2007

Extend Sign Word to Doubleword Required v 1.0

For each of two doubleword slots:

• The sign of the word in the right slot is propagated to the left word.

• The resulting 64-bit integer is stored in register RT.

xswd rt,ra

0 1 0 1 0 1 0 0 1 1 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:7 ← RepLeftBit(RA4:7,64)

RT8:15 ← RepLeftBit(RA12:15,64)

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 97 of 278

And Required v 1.0

The values in register RA and register RB are logically ANDed. The result is placed in register RT.

and rt,ra,rb

0 0 0 1 1 0 0 0 0 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:3 & RB0:3

RT4:7 ← RA4:7 & RB4:7

RT8:11 ← RA8:11 & RB8:11

RT12:15 ← RA12:15 & RB12:15

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 98 of 278
Version 1.2

January 27, 2007

And with Complement Required v 1.0

The value in register RA is logically ANDed with the complement of the value in register RB. The result is
placed in register RT.

andc rt,ra,rb

0 1 0 1 1 0 0 0 0 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:3 & (¬RB0:3)

RT4:7 ← RA4:7 & (¬RB4:7)

RT8:11 ← RA8:11 & (¬RB8:11)

RT12:15 ← RA12:15 & (¬RB12:15)

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 99 of 278

And Byte Immediate Required v 1.0

For each of 16 byte slots, the rightmost 8 bits of the I10 field are ANDed with the value in register RA. The
result is placed in register RT.

andbi rt,ra,value

0 0 0 1 0 1 1 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

b ← I10 & 0x00FF

bbbb ← b || b || b || b

RT0:3 ← RA0:3 & bbbb

RT4:7 ← RA4:7 & bbbb

RT8:11 ← RA8:11 & bbbb

RT12:15 ← RA12:15 & bbbb

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 100 of 278
Version 1.2

January 27, 2007

And Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The I10 field is extended to 16 bits by replicating its leftmost bit. The result is ANDed with the value in reg-
ister RA.

• The 16-bit result is placed in register RT.

andhi rt,ra,value

0 0 0 1 0 1 0 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I10,16)

RT0:1 ← RA0:1 & t

RT2:3 ← RA2:3 & t

RT4:5 ← RA4:5 & t

RT6:7 ← RA6:7 & t

RT8:9 ← RA8:9 & t

RT10:11 ← RA10:11 & t

RT12:13 ← RA12:13 & t

RT14:15 ← RA14:15 & t

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 101 of 278

And Word Immediate Required v 1.0

For each of four word slots:

• The value of the I10 field is extended to 32 bits by replicating its leftmost bit. The result is ANDed with the
contents of register RA.

• The result is placed in register RT.

andi rt,ra,value

0 0 0 1 0 1 0 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I10,32)

RT0:3 ← RA0:3 & t

RT4:7 ← RA4:7 & t

RT8:11 ← RA8:11 & t

RT12:15 ← RA12:15 & t

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 102 of 278
Version 1.2

January 27, 2007

Or Required v 1.0

The values in register RA and register RB are logically ORed. The result is placed in register RT.

or rt,ra,rb

0 0 0 0 1 0 0 0 0 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:3 | RB0:3

RT4:7 ← RA4:7 | RB4:7

RT8:11 ← RA8:11 | RB8:11

RT12:15 ← RA12:15 | RB12:15

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 103 of 278

Or with Complement Required v 1.0

The value in register RA is ORed with the complement of the value in register RB. The result is placed in
register RT.

orc rt,ra,rb

0 1 0 1 1 0 0 1 0 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:3 | (¬RB0:3)

RT4:7 ← RA4:7 | (¬RB4:7)

RT8:11 ← RA8:11 | (¬RB8:11)

RT12:15 ← RA12:15 | (¬RB12:15)

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 104 of 278
Version 1.2

January 27, 2007

Or Byte Immediate Required v 1.0

For each of 16 byte slots:

• The rightmost 8 bits of the I10 field are ORed with the value in register RA.

• The result is placed in register RT.

orbi rt,ra,value

0 0 0 0 0 1 1 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

b ← I10 & 0x00FF

bbbb ← b || b || b || b

RT0:3 ← RA0:3 | bbbb

RT4:7 ← RA4:7 | bbbb

RT8:11 ← RA8:11 | bbbb

RT12:15 ← RA12:15 | bbbb

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 105 of 278

Or Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The I10 field is extended to 16 bits by replicating its leftmost bit. The result is ORed with the value in reg-
ister RA.

• The result is placed in register RT.

orhi rt,ra,value

0 0 0 0 0 1 0 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I10,16)

RT0:1 ← RA0:1 | t

RT2:3 ← RA2:3 | t

RT4:5 ← RA4:5 | t

RT6:7 ← RA6:7 | t

RT8:9 ← RA8:9 | t

RT10:11 ← RA10:11 | t

RT12:13 ← RA12:13 | t

RT14:15 ← RA14:15 | t

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 106 of 278
Version 1.2

January 27, 2007

Or Word Immediate Required v 1.0

For each of four word slots:

• The I10 field is sign-extended to 32 bits and ORed with the contents of register RA.

• The result is placed in register RT.

ori rt,ra,value

0 0 0 0 0 1 0 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I10,32)

RT0:3 ← RA0:3 | t

RT4:7 ← RA4:7 | t

RT8:11 ← RA8:11 | t

RT12:15 ← RA12:15 | t

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 107 of 278

Or Across Required v 1.0

The four words of RA are logically ORed. The result is placed in the preferred slot of register RT. The other
three slots of the register are written with zeros.

orx rt,ra

0 0 1 1 1 1 1 0 0 0 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:3 | RA4:7 | RA8:11 | RA12:15

RT4:15 ← 0

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 108 of 278
Version 1.2

January 27, 2007

Exclusive Or Required v 1.0

The values in register RA and register RB are logically XORed. The result is placed in register RT.

xor rt,ra,rb

0 1 0 0 1 0 0 0 0 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:3 ⊕ RB0:3

RT4:7 ← RA4:7 ⊕ RB4:7

RT8:11 ← RA8:11 ⊕ RB8:11

RT12:15 ← RA12:15 ⊕ RB12:15

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 109 of 278

Exclusive Or Byte Immediate Required v 1.0

For each of 16 byte slots:

• The rightmost 8 bits of the I10 field are XORed with the value in register RA.

• The result is placed in register RT.

xorbi rt,ra,value

0 1 0 0 0 1 1 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

b ← I10 & 0x00FF

bbbb ← b || b || b || b

RT0:3 ← RA0:3 ⊕ bbbb

RT4:7 ← RA4:7 ⊕ bbbb

RT8:11 ← RA8:11 ⊕ bbbb

RT12:15 ← RA12:15 ⊕ bbbb

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 110 of 278
Version 1.2

January 27, 2007

Exclusive Or Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The I10 field is extended to 16 bits by replicating the leftmost bit. The resulting value is XORed with the
value in register RA.

• The 16-bit result is placed in register RT.

xorhi rt,ra,value

0 1 0 0 0 1 0 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I10,16)

RT0:1 ← RA0:1 ⊕ t

RT2:3 ← RA2:3 ⊕ t

RT4:5 ← RA4:5 ⊕ t

RT6:7 ← RA6:7 ⊕ t

RT8:9 ← RA8:9 ⊕ t

RT10:11 ← RA10:11 ⊕ t

RT12:13 ← RA12:13 ⊕ t

RT14:15 ← RA14:15 ⊕ t

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 111 of 278

Exclusive Or Word Immediate Required v 1.0

For each of four word slots:

• The I10 field is sign-extended to 32 bits and XORed with the contents of register RA.

• The 32-bit result is placed in register RT.

xori rt,ra,value

0 1 0 0 0 1 0 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RepLeftBit(I10,32)

RT0:3 ← RA0:3 ⊕ t

RT4:7 ← RA4:7 ⊕ t

RT8:11 ← RA8:11 ⊕ t

RT12:15 ← RA12:15 ⊕ t

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 112 of 278
Version 1.2

January 27, 2007

Nand Required v 1.0

For each of four word slots:

• The complement of the AND of the bit in register RA and the bit in register RB is placed in register RT.

nand rt,ra,rb

0 0 0 1 1 0 0 1 0 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← ¬(RA0:3 & RB0:3)

RT4:7 ← ¬(RA4:7 & RB4:7)

RT8:11 ← ¬(RA8:11 & RB8:11)

RT12:15 ← ¬(RA12:15 & RB12:15)

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 113 of 278

Nor Required v 1.0

For each of four word slots:

• The values in register RA and register RB are logically ORed.

• The result is complemented and placed in register RT.

nor rt,ra,rb

0 0 0 0 1 0 0 1 0 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← ¬(RA0:3 | RB0:3)

RT4:7 ← ¬(RA4:7 | RB4:7)

RT8:11 ← ¬(RA8:11 | RB8:11)

RT12:15 ← ¬(RA12:15 | RB12:15)

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 114 of 278
Version 1.2

January 27, 2007

Equivalent Required v 1.0

For each of four word slots:

• If the bit in register RA and register RB are the same, the result is ‘1’; otherwise, the result is ‘0’.

• The result is placed in register RT.

eqv rt,ra,rb

0 1 0 0 1 0 0 1 0 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← RA0:3 ⊕ (¬RB0:3)

RT4:7 ← RA4:7 ⊕ (¬RB4:7)

RT8:11 ← RA8:11 ⊕ (¬RB8:11)

RT12:15 ← RA12:15 ⊕ (¬RB12:15)

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Integer and Logical Instructions

Page 115 of 278

Select Bits Required v 1.0

A result is formed by using bits from RC to choose corresponding bits either from RA or RB.

• If the bit in register RC is ‘0’, then select the bit from register RA; otherwise, select the bit from register
RB.

• The selected bits are placed in register RT.

selb rt,ra,rb,rc

1 0 0 0 RT RB RA RC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:15 ← RC0:15 & RB0:15 | (¬RC0:15) & RA0:15

Instruction Set Architecture

Synergistic Processor Unit

Integer and Logical Instructions

Page 116 of 278
Version 1.2

January 27, 2007

Shuffle Bytes Required v 1.0

Registers RA and RB are logically concatenated with the least-significant bit of RA adjacent to the most-
significant bit of RB. The bytes of the resulting value are considered to be numbered from 0 to 31.

For each byte slot in registers RC and RT:

• The value in register RC is examined, and a result byte is produced as shown in Table 5-1.

• The result byte is inserted into register RT.

shufb rt,ra,rb,rc

1 0 1 1 RT RB RA RC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 5-1. Binary Values in Register RC and Byte Results

Value in Register RC
(Expressed in Binary) Result Byte

10xxxxxx 0x00

110xxxxx 0xFF

111xxxxx 0x80

Otherwise The byte of the concatenated register addressed by the rightmost 5 bits of register RC

Rconcat ← RA || RB
for j = 0 to 15

b ← RCj

If b0:1 = 0b10 then c ← 0x00
else If b0:2 = 0b110 then c ← 0xFF
else If b0:2 = 0b111 then c ← 0x80
else

b ← b & 0x1F;
c ← Rconcatb;

RTj ← c
end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 117 of 278

6. Shift and Rotate Instructions

This section describes the SPU shift and rotate instructions.

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 118 of 278
Version 1.2

January 27, 2007

Shift Left Halfword Required v 1.0

For each of eight halfword slots:

• The contents of register RA are shifted to the left according to the count in bits 11 to 15 of register RB.

• The result is placed in register RT.

• If the count is zero, the contents of register RA are copied unchanged into register RT. If the count is
greater than 15, the result is zero.

• Bits shifted out of the left end of the halfword are discarded; zeros are shifted in at the right.

Note: Each halfword slot has its own independent shift amount.

shlh rt,ra,rb

0 0 0 0 1 0 1 1 1 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 2
s ← RBj::2 & 0x001F
t ← RAj::2

for b = 0 to 15
if b + s < 16 then rb ← tb + s
else rb ← 0

end
RTj::2 ← r

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 119 of 278

Shift Left Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The contents of register RA are shifted to the left according to the count in bits 13 to 17 of the I7 field.

• The result is placed in register RT.

• If the count is zero, the contents of register RA are copied unchanged into register RT. If the count is
greater than 15, the result is zero.

• Bits shifted out of the left end of the halfword are discarded; zeros are shifted in at the right.

shlhi rt,ra,value

0 0 0 0 1 1 1 1 1 1 1 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RepLeftBit(I7,16) & 0x001F
for j = 0 to 15 by 2

t ← RAj::2

for b = 0 to 15
if b + s < 16 then rb ← tb + s
else rb ← 0

end
RTj::2 ← r

end

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 120 of 278
Version 1.2

January 27, 2007

Shift Left Word Required v 1.0

For each of four word slots:

• The contents of register RA are shifted to the left according to the count in bits 26 to 31 of register RB.

• The result is placed in register RT.

• If the count is zero, the contents of register RA are copied unchanged into register RT. If the count is
greater than 31, the result is zero.

• Bits shifted out of the left end of the word are discarded; zeros are shifted in at the right.

Note: Each word slot has its own independent shift amount.

shl rt,ra,rb

0 0 0 0 1 0 1 1 0 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 4
s ← RBj::4 & 0x0000003F
t ← RAj::4

for b = 0 to 31
if b + s < 32 then rb ← tb + s
else rb ← 0

end
RTj::4 ← r

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 121 of 278

Shift Left Word Immediate Required v 1.0

For each of four word slots:

• The contents of register RA are shifted to the left according to the count in bits 12 to 17 of the I7 field.

• The result is placed in register RT.

• If the count is zero, the contents of register RA are copied unchanged into register RT. If the count is
greater than 31, the result is zero.

• Bits shifted out of the left end of the word are discarded; zeros are shifted in at the right.

shli rt,ra,value

0 0 0 0 1 1 1 1 0 1 1 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RepLeftBit(I7,32) & 0x0000003F
for j = 0 to 15 by 4

t ← RAj::4

for b = 0 to 31
if b + s < 32 then rb ← tb + s
else rb ← 0

end
RTj::4 ← r

end

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 122 of 278
Version 1.2

January 27, 2007

Shift Left Quadword by Bits Required v 1.0

The contents of register RA are shifted to the left according to the count in bits 29 to 31 of the preferred slot of
register RB. The result is placed in register RT. A shift of up to 7 bit positions is possible.

If the count is zero, the contents of register RA are copied unchanged into register RT.

Bits shifted out of the left end of the register are discarded, and zeros are shifted in at the right.

shlqbi rt,ra,rb

0 0 1 1 1 0 1 1 0 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RB29:31
for b = 0 to 127

if b + s < 128 then rb ← RAb + s
else rb ← 0

end
RT ← r

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 123 of 278

Shift Left Quadword by Bits Immediate Required v 1.0

The contents of register RA are shifted to the left according to the count in bits 15 to 17 of the I7 field. The
result is placed in register RT. A shift of up to 7 bit positions is possible.

If the count is zero, the contents of register RA are copied unchanged into register RT.

Bits shifted out of the left end of the register are discarded, and zeros are shifted in at the right.

shlqbii rt,ra,value

0 0 1 1 1 1 1 1 0 1 1 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← I7 & 0x07
for b = 0 to 127

if b + s < 128 then rb ← RAb + s
else rb ← 0

end
RT ← r

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 124 of 278
Version 1.2

January 27, 2007

Shift Left Quadword by Bytes Required v 1.0

The bytes of register RA are shifted to the left according to the count in bits 27 to 31 of the preferred slot of
register RB. The result is placed in register RT.

If the count is zero, the contents of register RA are copied unchanged into register RT. If the count is greater
than 15, the result is zero.

Bytes shifted out of the left end of the register are discarded, and bytes of zeros are shifted in at the right.

shlqby rt,ra,rb

0 0 1 1 1 0 1 1 1 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RB27:31
for b = 0 to 15

if b + s < 16 then rb ← RAb + s

else rb ← 0
end
RT ← r

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 125 of 278

Shift Left Quadword by Bytes Immediate Required v 1.0

The bytes of register RA are shifted to the left according to the count in bits 13 to 17 of the I7 field. The result
is placed in register RT.

If the count is zero, the contents of register RA are copied unchanged into register RT. If the count is greater
than 15, the result is zero.

Bytes shifted out of the left end of the register are discarded, and zero bytes are shifted in at the right.

shlqbyi rt,ra,value

0 0 1 1 1 1 1 1 1 1 1 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← I7 & 0x1F
for b = 0 to 15

if b + s < 16 then rb ← RAb + s

else rb ← 0
end
RT ← r

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 126 of 278
Version 1.2

January 27, 2007

Shift Left Quadword by Bytes from Bit Shift Count Required v 1.0

The bytes of register RA are shifted to the left according to the count in bits 24 to 28 of the preferred slot of
register RB. The result is placed in register RT.

If the count is zero, the contents of register RA are copied unchanged into register RT. If the count is greater
than 15, the result is zero.

Bytes shifted out of the left end of the register are discarded, and bytes of zeros are shifted in at the right.

shlqbybi rt,ra,rb

0 0 1 1 1 0 0 1 1 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RB24:28
for b = 0 to 15

if b + s < 16 then rb ← RAb + s

else rb ← 0x00
end
RT ← r

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 127 of 278

Rotate Halfword Required v 1.0

For each of eight halfword slots:

• The contents of register RA are rotated to the left according to the count in bits 12 to 15 of register RB.

• The result is placed in register RT.

• If the count is zero, the contents of register RA are copied unchanged into register RT.

• Bits rotated out of the left end of the halfword are rotated in at the right end.

Note: Each halfword slot has its own independent rotate amount.

roth rt,ra,rb

0 0 0 0 1 0 1 1 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 2
s ← RBj::2 & 0x000F
t ← RAj::2

for b = 0 to 15
if b + s < 16 then rb ← tb + s
else rb ← tb + s - 16

end
RTj::2 ← r

end

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 128 of 278
Version 1.2

January 27, 2007

Rotate Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The contents of register RA are rotated to the left according to the count in bits 14 to 17 of the I7 field.

• The result is placed in register RT.

• If the count is zero, the contents of register RA are copied unchanged into register RT.

• Bits rotated out of the left end of the halfword are rotated in at the right end.

rothi rt,ra,value

0 0 0 0 1 1 1 1 1 0 0 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RepLeftBit(I7,16) & 0x000F
for j = 0 to 15 by 2

t ← RAj::2

for b = 0 to 15
if b + s < 16 then rb ← tb + s
else rb ← tb + s - 16

end
RTj::2 ← r

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 129 of 278

Rotate Word Required v 1.0

For each of four word slots:

• The contents of register RA are rotated to the left according to the count in bits 27 to 31 of register RB.

• The result is placed in register RT.

• If the count is zero, the contents of register RA are copied unchanged into register RT.

• Bits rotated out of the left end of the word are rotated in at the right end.

rot rt,ra,rb

0 0 0 0 1 0 1 1 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 4
s ← RBj::4 & 0x0000001F
t ← RAj::4

for b = 0 to 31
if b + s < 32 then rb ← tb + s
else rb ← tb + s - 32

end
RTj::4 ← r

end

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 130 of 278
Version 1.2

January 27, 2007

Rotate Word Immediate Required v 1.0

For each of four word slots:

• The contents of register RA are rotated to the left according to the count in bits 13 to 17 of the I7 field.

• The result is placed in register RT.

• If the count is zero, the contents of register RA are copied unchanged into register RT.

• Bits rotated out of the left end of the word are rotated in at the right end.

roti rt,ra,value

0 0 0 0 1 1 1 1 0 0 0 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RepLeftBit(I7,32) & 0x0000001F
for j = 0 to 15 by 4

t ← RAj::4

for b = 0 to 31
if b + s < 32 then rb ← tb + s
else rb ← tb + s - 32

end
RTj::4 ← r

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 131 of 278

Rotate Quadword by Bytes Required v 1.0

The bytes in register RA are rotated to the left according to the count in the rightmost 4 bits of the preferred
slot of register RB. The result is placed in register RT. Rotation of up to 15 byte positions is possible.

If the count is zero, the contents of register RA are copied unchanged into register RT.

Bytes rotated out of the left end of the register are rotated in at the right.

rotqby rt,ra,rb

0 0 1 1 1 0 1 1 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RB28:31
for b = 0 to 15

if b + s < 16 then rb ← RAb + s

else rb ← RAb + s - 16

end
RT ← r

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 132 of 278
Version 1.2

January 27, 2007

Rotate Quadword by Bytes Immediate Required v 1.0

The bytes in register RA are rotated to the left according to the count in the rightmost 4 bits of the I7 field. The
result is placed in register RT. Rotation of up to 15 byte positions is possible.

If the count is zero, the contents of register RA are copied unchanged into register RT.

Bytes rotated out of the left end of the register are rotated in at the right.

rotqbyi rt,ra,value

0 0 1 1 1 1 1 1 1 0 0 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← I714:17
for b = 0 to 15

if b + s < 16 then rb ← RAb + s

else rb ← RAb + s - 16

end
RT ← r

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 133 of 278

Rotate Quadword by Bytes from Bit Shift Count Required v 1.0

The bytes of register RA are rotated to the left according to the count in bits 25 to 28 of the preferred slot of
register RB. The result is placed in register RT.

If the count is zero, the contents of register RA are copied unchanged into register RT.

Bytes rotated out of the left end of the register are rotated in at the right.

rotqbybi rt,ra,rb

0 0 1 1 1 0 0 1 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RB24:28
for b = 0 to 15

if b + s < 16 then rb ← RAb + s

else rb ← RAb + s - 16

end
RT ← r

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 134 of 278
Version 1.2

January 27, 2007

Rotate Quadword by Bits Required v 1.0

The contents of register RA are rotated to the left according to the count in bits 29 to 31 of the preferred slot
of register RB. The result is placed in register RT. Rotation of up to 7 bit positions is possible.

If the count is zero, the contents of register RA are copied unchanged into register RT.

Bits rotated out at the left end of the register are rotated in at the right.

rotqbi rt,ra,rb

0 0 1 1 1 0 1 1 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← RB29:31
for b = 0 to 127

if b + s < 128 then rb ← RAb + s
else rb ← RAb + s - 128

end
RT ← r

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 135 of 278

Rotate Quadword by Bits Immediate Required v 1.0

The contents of register RA are rotated to the left according to the count in bits 15 to 17 of the I7 field. The
result is placed in register RT. Rotation of up to 7 bit positions is possible.

If the count is zero, the contents of register RA are copied unchanged into register RT.

Bits rotated out at the left end of the register are rotated in at the right.

rotqbii rt,ra,value

0 0 1 1 1 1 1 1 0 0 0 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← I4:6
for b = 0 to 127

if b + s < 128 then rb ← RAb + s
else rb ← RAb + s - 128

end
RT ← r

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 136 of 278
Version 1.2

January 27, 2007

Rotate and Mask Halfword Required v 1.0

For each of eight halfword slots:

• The shift_count is (0 - RB) modulo 32.

• If the shift_count is less than 16, then RT is set to the contents of RA shifted right shift_count bits, with
zero fill at the left.

• Otherwise, RT is set to zero.

Note: Each halfword slot has its own independent rotate amount.

Programming Note: The Rotate and Mask instructions provide support for a logical right shift, and the
Rotate and Mask Algebraic instructions provide support for an algebraic right shift. They differ from a conven-
tional right logical or algebraic shift in that the shift amount accepted by the instructions is the two’s comple-
ment of the right shift amount. Thus, to shift right logically the contents of R2 by the number of bits given in
R1, the following sequence could be used:

For the immediate forms of these instructions, the formation of the two’s complement shift quantity can be
performed during assembly or compilation.

rothm rt,ra,rb

0 0 0 0 1 0 1 1 1 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 2
s ← (0 - RBj::2) & 0x001F
t ← RAj::2

for b = 0 to 15
if b ≥ s then rb ← tb - s
else rb ← 0

end
RTj::2 ← r

end

sfi r3,r1,0 Form two’s complement
rotm r4,r2,r3 Rotate, then mask

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 137 of 278

Rotate and Mask Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The shift_count is (0 - I7) modulo 32.

• If the shift_count is less than 16, then RT is set to the contents of RA shifted right shift_count bits, with
zero fill at the left.

• Otherwise, RT is set to zero.

Programming Note: The Rotate and Mask instructions provide support for a logical right shift, and the
Rotate and Mask Algebraic instructions provide support for an algebraic right shift. They differ from a conven-
tional right logical or algebraic shift in that the shift amount accepted by the instructions is the two’s comple-
ment of the right shift amount. Thus, to shift right logically the contents of R2 by the number of bits given in
R1, the following sequence could be used:

For the immediate forms of these instructions, the formation of the two’s complement shift quantity can be
performed during assembly or compilation.

rothmi rt,ra,value

0 0 0 0 1 1 1 1 1 0 1 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← (0 - RepLeftBit(I7,32)) & 0x0000001F
for j = 0 to 15 by 2

t ← RAj::2

for b = 0 to 15
if b≥s then rb ← tb-s
else rb ← 0

end
RTj::2 ← r

end

sfi r3,r1,0 Form two’s complement
rotm r4,r2,r3 Rotate, then mask

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 138 of 278
Version 1.2

January 27, 2007

Rotate and Mask Word Required v 1.0

For each of four word slots:

• The shift_count is (0 - RB) modulo 64.

• If the shift_count is less than 32, then RT is set to the contents of RA shifted right shift_count bits, with
zero fill at the left.

• Otherwise, RT is set to zero.

Programming Note: The Rotate and Mask instructions provide support for a logical right shift, and the
Rotate and Mask Algebraic instructions provide support for an algebraic right shift. They differ from a conven-
tional right logical or algebraic shift in that the shift amount accepted by the instructions is the two’s comple-
ment of the right shift amount. Thus, to shift right logically the contents of R2 by the number of bits given in
R1, the following sequence could be used:

For the immediate forms of these instructions, the formation of the two’s complement shift quantity can be
performed during assembly or compilation.

rotm rt,ra,rb

0 0 0 0 1 0 1 1 0 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 4
s ← (0 - RBj::4) & 0x0000003F
t ← RAj::4

for b = 0 to 31
if b ≥ s then rb ← tb - s
else rb ← 0

end
RTj::4 ← r

end

sfi r3,r1,0 Form two’s complement
rotm r4,r2,r3 Rotate, then mask

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 139 of 278

Rotate and Mask Word Immediate Required v 1.0

For each of four word slots:

• The shift_count is (0 - I7) modulo 64.

• If the shift_count is less than 32, then RT is set to the contents of RA shifted right shift_count bits, with
zero fill at the left.

• Otherwise, RT is set to zero.

Programming Note: The Rotate and Mask instructions provide support for a logical right shift, and the
Rotate and Mask Algebraic instructions provide support for an algebraic right shift. They differ from a conven-
tional right logical or algebraic shift in that the shift amount accepted by the instructions is the two’s comple-
ment of the right shift amount. Thus, to shift right logically the contents of R2 by the number of bits given in
R1, the following sequence could be used:

For the immediate forms of these instructions, the formation of the two’s complement shift quantity can be
performed during assembly or compilation.

rotmi rt,ra,value

0 0 0 0 1 1 1 1 0 0 1 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← (0 - RepLeftBit(I7,32)) & 0x0000003F
for j = 0 to 15 by 4

t ← RAj::4

for b = 0 to 31
if b ≥ s then rb ← tb - s
else rb ← 0

end
RTj::4 ← r

end

sfi r3,r1,0 Form two’s complement
rotm r4,r2,r3 Rotate, then mask

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 140 of 278
Version 1.2

January 27, 2007

Rotate and Mask Quadword by Bytes Required v 1.0

The shift_count is (0 - the preferred word of RB) modulo 32. If the shift_count is less than 16, then RT is set to
the contents of RA shifted right shift_count bytes, filling at the left with 0x00 bytes. Otherwise, RT is set to
zero.

rotqmby rt,ra,rb

0 0 1 1 1 0 1 1 1 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← (0 - RB27:31) & 0x1F
for b = 0 to 15

if b ≥ s then rb ← tb - s

else rb ← 0x00
end
RT ← r

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 141 of 278

Rotate and Mask Quadword by Bytes Immediate Required v 1.0

The shift_count is (0 - I7) modulo 32. If the shift_count is less than 16, then RT is set to the contents of RA
shifted right shift_count bytes, filling at the left with 0x00 bytes. Otherwise, all bytes of RT are set to 0x00.

rotqmbyi rt,ra,value

0 0 1 1 1 1 1 1 1 0 1 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← (0 - I7) & 0x1F
for b = 0 to 15

if b ≥ s then rb ← tb - s

else rb ← 0x00
end
RT ← r

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 142 of 278
Version 1.2

January 27, 2007

Rotate and Mask Quadword Bytes from Bit Shift Count Required v 1.0

The shift_count is (0 minus bits 24 to 28 of RB) modulo 32. If the shift_count is less than 16, then RT is set to
the contents of RA, which is shifted right shift_count bytes, and filled at the left with 0x00 bytes. Otherwise, all
bytes of RT are set to 0x00.

rotqmbybi rt,ra,rb

0 0 1 1 1 0 0 1 1 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← (0 - RB24:28) & 0x1F
for b = 0 to 15

if b ≥ s then rb ← RAb - s

else rb ← 0x00
end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 143 of 278

Rotate and Mask Quadword by Bits Required v 1.0

The shift_count is (0 - the preferred word of RB) modulo 8. RT is set to the contents of RA, shifted right by
shift_count bits, filling at the left with zero bits.

rotqmbi rt,ra,rb

0 0 1 1 1 0 1 1 0 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← (0 - RB29:31) & 0x07
for b = 0 to 127

if b ≥ s then rb ← tb - s
else rb ← 0

end
RT ← r

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 144 of 278
Version 1.2

January 27, 2007

Rotate and Mask Quadword by Bits Immediate Required v 1.0

The shift_count is (0 - I7) modulo 8. RT is set to the contents of RA, shifted right by shift_count bits, filling at
the left with zero bits.

rotqmbii rt,ra,value

0 0 1 1 1 1 1 1 0 0 1 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← (0 - I7) & 0x07
for b = 0 to 127

if b ≥ s then rb ← tb - s
else rb ← 0

end
RT ← r

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 145 of 278

Rotate and Mask Algebraic Halfword Required v 1.0

For each of eight halfword slots:

• The shift_count is (0 - RB) modulo 32.

• If the shift_count is less than 16, then RT is set to the contents of RA shifted right shift_count bits, repli-
cating bit 0 (of the halfword) at the left.

• Otherwise, all bits of this halfword of RT are set to bit 0 of this halfword of RA.

Note: Each halfword slot has its own independent rotate amount.

rotmah rt,ra,rb

0 0 0 0 1 0 1 1 1 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 2
s ← (0 - RBj::2) & 0x001F
t ← RAj::2

for b = 0 to 15
if b ≥ s then rb ← tb - s
else rb ← t0

end
RTj::2 ← r

end

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 146 of 278
Version 1.2

January 27, 2007

Rotate and Mask Algebraic Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The shift_count is (0 - I7) modulo 32.

• If the shift_count is less than 16, then RT is set to the contents of RA shifted right shift_count bits, repli-
cating bit 0 (of the halfword) at the left.

• Otherwise, all bits of this halfword of RT are set to bit 0 of this halfword of RA.

rotmahi rt,ra,value

0 0 0 0 1 1 1 1 1 1 0 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← (0 - RepLeftBit(I7,16)) & 0x001F
for j = 0 to 15 by 2

t ← RAj::2

for b = 0 to 15
if b ≥ s then rb ← tb - s
else rb ← t0

end
RTj::2 ← r

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Shift and Rotate Instructions

Page 147 of 278

Rotate and Mask Algebraic Word Required v 1.0

For each of four word slots:

• The shift_count is (0 - RB) modulo 64.

• If the shift_count is less than 32, then RT is set to the contents of RA shifted right shift_count bits, repli-
cating bit 0 (of the word) at the left.

• Otherwise, all bits of this word of RT are set to bit 0 of this word of RA.

rotma rt,ra,rb

0 0 0 0 1 0 1 1 0 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for j = 0 to 15 by 4
s ← (0 - RBj::4) & 0x0000003F
t ← RAj::4

for b = 0 to 31
if b ≥ s then rb ← tb - s
else rb ← t0

end
RTj::4 ← r

end

Instruction Set Architecture

Synergistic Processor Unit

Shift and Rotate Instructions

Page 148 of 278
Version 1.2

January 27, 2007

Rotate and Mask Algebraic Word Immediate Required v 1.0

For each of four word slots:

• The shift_count is (0 - I7) modulo 64.

• If the shift_count is less than 32, then RT is set to the contents of RA shifted right shift_count bits, repli-
cating bit 0 (of the word) at the left.

• Otherwise, all bits of this word of RT are set to bit 0 of this word of RA.

rotmai rt,ra,value

0 0 0 0 1 1 1 1 0 1 0 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s ← (0 - RepLeftBit(I7,32)) & 0x0000003F
for j = 0 to 15 by 4

t ← RAj::4

for b = 0 to 31
if b ≥ s then rb ← tb - s
else rb ← t0

end
RTj::4 ← r

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 149 of 278

7. Compare, Branch, and Halt Instructions

This section lists and describes the SPU compare, branch, and halt instructions. For more information about
the SPU interrupt facility, see Section 12 on page 251.

Conditional branch instructions operate by examining a value in a register, rather than by accessing a
specialized condition code register. The value is taken from the preferred slot. It is usually set by a compare
instruction.

Compare instructions perform a comparison of the values in two registers or a value in a register and an
immediate value. The result is indicated by setting into the target register a result value that is the same width
as the register operands. If the comparison condition is met, the value is all one bits; if not, the value is all
zero bits.

Logical comparison instructions treat the operands as unsigned integers. Other compare instructions treat the
operands as two’s complement signed integers.

A set of halt instructions is provided that stops execution when the tested condition is met. These are
intended to be used, for example, to check addresses or subscript ranges in situations where failure to meet
the condition is regarded as a serious error. The stop that occurs is not precise; as a result, execution can
generally not be restarted.

Floating-point compare instructions are listed in Section 9 Floating-Point Instructions on page 195 with the
other floating-point instructions.

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 150 of 278
Version 1.2

January 27, 2007

Halt If Equal Required v 1.0

The value in the preferred slot of register RA is compared with the value in the preferred slot of register RB. If
the values are equal, execution of the program stops at or after the halt.

Programming Note: RT is a false target. Implementations can schedule instructions as though this instruc-
tion produces a value into RT. Programs can avoid unnecessary delay by programming RT so as not to
appear to source data for nearby subsequent instructions. False targets are not written.
.

heq ra,rb

0 1 1 1 1 0 1 1 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If RA0:3 = RB0:3 then
Stop after executing zero or more instructions after the halt.

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 151 of 278

Halt If Equal Immediate Required v 1.0

The value in the I10 field is extended to 32 bits by replicating the leftmost bit. The result is compared to the
value in the preferred slot of register RA. If the value from register RA is equal to the immediate value, execu-
tion of the SPU program stops at or after the halt instruction.

Programming Note: RT is a false target. Implementations can schedule instructions as though this instruc-
tion produces a value into RT. Programs can avoid unnecessary delay by programming RT so as not to
appear to source data for nearby subsequent instructions. False targets are not written.

heqi ra,symbol

0 1 1 1 1 1 1 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If RA0:3 = RepLeftBit(I10,32) then
Stop after executing zero or more instructions after the halt.

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 152 of 278
Version 1.2

January 27, 2007

Halt If Greater Than Required v 1.0

The value in the preferred slot of register RA is algebraically compared with the value in the preferred slot of
register RB. If the value from register RA is greater than the RB value, execution of the SPU program stops at
or after the halt instruction.

Programming Note: RT is a false target. Implementations can schedule instructions as though this instruc-
tion produces a value into RT. Programs can avoid unnecessary delay by programming RT so as not to
appear to source data for nearby subsequent instructions. False targets are not written.

hgt ra,rb

0 1 0 0 1 0 1 1 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If RA0:3 > RB0:3 then
Stop after executing zero or more instructions after the halt.

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 153 of 278

Halt If Greater Than Immediate Required v 1.0

The value in the I10 field is extended to 32 bits by replicating the leftmost bit. The result is algebraically
compared to the value in the preferred slot of register RA. If the value from register RA is greater than the
immediate value, execution of the SPU program stops at or after the halt instruction.

Programming Note: RT is a false target. Implementations can schedule instructions as though this instruc-
tion produces a value into RT. Programs can avoid unnecessary delay by programming RT so as not to
appear to source data for nearby subsequent instructions. False targets are not written.

hgti ra,symbol

0 1 0 0 1 1 1 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If RA0:3 > RepLeftBit(I10,32) then
Stop after executing zero or more instructions after the halt.

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 154 of 278
Version 1.2

January 27, 2007

Halt If Logically Greater Than Required v 1.0

The value in the preferred slot of register RA is logically compared with the value in the preferred slot of
register RB. If the value from register RA is greater than the value from register RB, execution of the SPU
program stops at or after the halt instruction.

Programming Note: RT is a false target. Implementations can schedule instructions as though this instruc-
tion produces a value into RT. Programs can avoid unnecessary delay by programming RT so as not to
appear to source data for nearby subsequent instructions. False targets are not written.

hlgt ra,rb

0 1 0 1 1 0 1 1 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If RA0:3 >u RB0:3 then
Stop after executing zero or more instructions after the halt.

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 155 of 278

Halt If Logically Greater Than Immediate Required v 1.0

The value in the I10 field is extended to 32 bits by replicating the leftmost bit. The result is logically compared
to the value in the preferred slot of register RA. If the value from register RA is logically greater than the
immediate value, execution of the SPU program stops at or after the halt instruction.

Programming Note: RT is a false target. Implementations can schedule instructions as though this instruc-
tion produces a value into RT. Programs can avoid unnecessary delay by programming RT so as not to
appear to source data for nearby subsequent instructions. False targets are not written.

hlgti ra,symbol

0 1 0 1 1 1 1 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If RA0:3 >u RepLeftBit(I10,32) then
Stop after executing zero or more instructions after the halt.

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 156 of 278
Version 1.2

January 27, 2007

Compare Equal Byte Required v 1.0

For each of 16 byte slots:

• The operand from register RA is compared with the operand from register RB. If the operands are equal,
a result of all one bits (true) is produced. If they are unequal, a result of all zero bits (false) is produced.

• The 8-bit result is placed in register RT.

ceqb rt,ra,rb

0 1 1 1 1 0 1 0 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15
If RAi = RBi then RTi ← 0xFF
else RTi ← 0x00

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 157 of 278

Compare Equal Byte Immediate Required v 1.0

For each of 16 byte slots:

• The value in the rightmost 8 bits of the I10 field is compared with the value in register RA. If the two val-
ues are equal, a result of all one bits (true) is produced. If they are unequal, a result of all zero bits (false)
is produced.

• The 8-bit result is placed in register RT.

ceqbi rt,ra,value

0 1 1 1 1 1 1 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15
If RAi = I102:9 then RTi ← 0xFF
else RTi ← 0x00

end

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 158 of 278
Version 1.2

January 27, 2007

Compare Equal Halfword Required v 1.0

For each of 8 halfword slots:

• The operand from register RA is compared with the operand from register RB. If the operands are equal,
a result of all one bits (true) is produced. If they are unequal, a result of all zero bits (false) is produced.

• The 16-bit result is placed in register RT.

ceqh rt,ra,rb

0 1 1 1 1 0 0 1 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 2
If RAi::2 = RBi::2 then RTi::2 ← 0xFFFF
else RTi::2 ← 0x0000

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 159 of 278

Compare Equal Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The value in the I10 field is extended to 16 bits by replicating its leftmost bit and compared with the value
in register RA. If the two values are equal, a result of all one bits (true) is produced. If they are unequal, a
result of all zero bits (false) is produced.

• The 16-bit result is placed in register RT.

ceqhi rt,ra,value

0 1 1 1 1 1 0 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 2
If RAi::2 = RepLeftBit(I10,16) then RTi::2 ← 0xFFFF
else RTi::2 ← 0x0000

end

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 160 of 278
Version 1.2

January 27, 2007

Compare Equal Word Required v 1.0

For each of four word slots:

• The operand from register RA is compared with the operand from register RB. If the operands are equal,
a result of all one bits (true) is produced. If they are unequal, a result of all zero bits (false) is produced.

• The 32-bit result is placed in register RT.

ceq rt,ra,rb

0 1 1 1 1 0 0 0 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 4
If RAi::4 = RBi::4 then RTi::4 ← 0xFFFFFFFF
else RTi::4 ← 0x00000000

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 161 of 278

Compare Equal Word Immediate Required v 1.0

For each of four word slots:

• The I10 field is extended to 32 bits by replicating its leftmost bit and comparing it with the value in register
RA. If the two values are equal, a result of all one bits (true) is produced. If they are unequal, a result of all
zero bits (false) is produced.

• The 32-bit result is placed in register RT.

ceqi rt,ra,value

0 1 1 1 1 1 0 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 4
If RAi::4 = RepLeftBit(I10,32) then RTi::4 ← 0xFFFFFFFF
else RTi::4 ← 0x00000000

end

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 162 of 278
Version 1.2

January 27, 2007

Compare Greater Than Byte Required v 1.0

For each of 16 byte slots:

• The operand from register RA is algebraically compared with the operand from register RB. If the oper-
and in register RA is greater than the operand in register RB, a result of all one bits (true) is produced.
Otherwise, a result of all zero bits (false) is produced.

• The 8-bit result is placed in register RT.

cgtb rt,ra,rb

0 1 0 0 1 0 1 0 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15
If RAi > RBi then RTi ← 0xFF
else RTi ← 0x00

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 163 of 278

Compare Greater Than Byte Immediate Required v 1.0

For each of 16 byte slots:

• The value in the rightmost 8 bits of the I10 field is algebraically compared with the value in register RA. If
the value in register RA is greater, a result of all one bits (true) is produced. Otherwise, a result of all zero
bits (false) is produced.

• The 8-bit result is placed in register RT.

cgtbi rt,ra,value

0 1 0 0 1 1 1 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15
If RAi > I102:9 then RTi ← 0xFF
else RTi ← 0x00

end

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 164 of 278
Version 1.2

January 27, 2007

Compare Greater Than Halfword Required v 1.0

For each of 8 halfword slots:

• The operand from register RA is algebraically compared with the operand from register RB. If the oper-
and in register RA is greater than the operand in register RB, a result of all one bits (true) is produced.
Otherwise, a result of all zero bits (false) is produced.

• The 16-bit result is placed in register RT.

cgth rt,ra,rb

0 1 0 0 1 0 0 1 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 2
If RAi::2 > RBi::2 then RTi::2 ← 0xFFFF
else RTi::2 ← 0x0000

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 165 of 278

Compare Greater Than Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The value in the I10 field is extended to 16 bits and algebraically compared with the value in register RA.
If the value in register RA is greater than the I10 value, a result of all one bits (true) is produced. Other-
wise, a result of all zero bits (false) is produced.

• The 16-bit result is placed in register RT.

cgthi rt,ra,value

0 1 0 0 1 1 0 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 2
If RAi::2 > RepLeftBit(I10,16) then RTi::2 ← 0xFFFF
else RTi::2 ← 0x0000

end

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 166 of 278
Version 1.2

January 27, 2007

Compare Greater Than Word Required v 1.0

For each of four word slots:

• The operand from register RA is algebraically compared with the operand from register RB. If the oper-
and in register RA is greater than the operand in register RB, a result of all one bits (true) is produced.
Otherwise, a result of all zero bits (false) is produced.

• The 32-bit result is placed in register RT.

cgt rt,ra,rb

0 1 0 0 1 0 0 0 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 4
If RAi::4 > RBi::4 then RTi::4 ← 0xFFFFFFFF
else RTi::4 ← 0x00000000

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 167 of 278

Compare Greater Than Word Immediate Required v 1.0

For each of four word slots:

• The value in the I10 field is extended to 32 bits by sign extension and algebraically compared with the
value in register RA. If the value in register RA is greater than the I10 value, a result of all one bits (true)
is produced. Otherwise, a result of all zero bits (false) is produced.

• The 32-bit result is placed in register RT.

cgti rt,ra,value

0 1 0 0 1 1 0 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 4
If RAi::4 > RepLeftBit(I10,32) then RTi::4 ← 0xFFFFFFFF
else RTi::4 ← 0x00000000

end

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 168 of 278
Version 1.2

January 27, 2007

Compare Logical Greater Than Byte Required v 1.0

For each of 16 byte slots:

• The operand from register RA is logically compared with the operand from register RB. If the operand in
register RA is logically greater than the operand in register RB, a result of all one bits (true) is produced.
Otherwise, a result of all zero bits (false) is produced.

• The 8-bit result is placed in register RT.

clgtb rt,ra,rb

0 1 0 1 1 0 1 0 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15
If RAi >u RBi thenRTi ← 0xFF
else RTi ← 0x00

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 169 of 278

Compare Logical Greater Than Byte Immediate Required v 1.0

For each of 16 byte slots:

• The value in the rightmost 8 bits of the I10 field is logically compared with the value in register RA. If the
value in register RA is logically greater, a result of all one bits (true) is produced. Otherwise, a result of all
zero (false) bits is produced.

• The 8-bit result is placed in register RT.

clgtbi rt,ra,value

0 1 0 1 1 1 1 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15
If RAi >u I102:9 then RTi ← 0xFF
else RTi ← 0x00

end

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 170 of 278
Version 1.2

January 27, 2007

Compare Logical Greater Than Halfword Required v 1.0

For each of eight halfword slots:

• The operand from register RA is logically compared with the operand from register RB. If the operand in
register RA is logically greater than the operand in register RB, a result of all one bits (true) is produced.
Otherwise, a result of all zero bits (false) is produced.

• The 16-bit result is placed in register RT.

clgth rt,ra,rb

0 1 0 1 1 0 0 1 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 2
If RAi::2 >u RBi::2 then RTi::2 ← 0xFFFF
else RTi::2 ← 0x0000

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 171 of 278

Compare Logical Greater Than Halfword Immediate Required v 1.0

For each of eight halfword slots:

• The value in the I10 field is extended to 16 bits by replicating the leftmost bit and logically compared with
the value in register RA. If the value in register RA is logically greater than the I10 value, a result of all one
bits (true) is produced. Otherwise, a result of all zero bits (false) is produced.

• The 16-bit result is placed in register RT.

clgthi rt,ra,value

0 1 0 1 1 1 0 1 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 2
If RAi::2 >u RepLeftBit(I10,16) then RTi::2 ← 0xFFFF
else RTi::2 ← 0x0000

end

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 172 of 278
Version 1.2

January 27, 2007

Compare Logical Greater Than Word Required v 1.0

For each of four word slots:

• The operand from register RA is logically compared with the operand from register RB. If the operand in
register RA is logically greater than the operand in register RB, a result of all one bits (true) is produced.
Otherwise, a result of all zero bits (false) is produced.

• The 32-bit result is placed in register RT.

clgt rt,ra,rb

0 1 0 1 1 0 0 0 0 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 4
If RAi::4 >u RBi::4 then RTi::4 ← 0xFFFFFFFF
else RTi::4 ← 0x00000000

end

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 173 of 278

Compare Logical Greater Than Word Immediate Required v 1.0

For each of four word slots:

• The value in the I10 field is extended to 32 bits by sign extension and logically compared with the value in
register RA. If the value in register RA is logically greater than the I10 value, a result of all one bits (true)
is produced. Otherwise, a result of all zero bits (false) is produced.

• The 32-bit result is placed in register RT.

clgti rt,ra,value

0 1 0 1 1 1 0 0 I10 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

for i = 0 to 15 by 4
If RAi::4 >u RepLeftBit(I10,32) then RTi::4 ← 0xFFFFFFFF
else RTi::4 ← 0x00000000

end

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 174 of 278
Version 1.2

January 27, 2007

Branch Relative Required v 1.0

Execution proceeds with the target instruction. The address of the target instruction is computed by adding
the value of the I16 field, extended on the right with two zero bits with the result treated as a signed quantity,
to the address of the Branch Relative instruction.

Programming Note: If the value of the I16 field is zero, an infinite one instruction loop is executed.

br symbol

0 0 1 1 0 0 1 0 0 I16 ///

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PC ← (PC + RepLeftBit(I16 || 0b00,32)) & LSLR

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 175 of 278

Branch Absolute Required v 1.0

Execution proceeds with the target instruction. The address of the target instruction is the value of the I16
field, extended on the right with two zero bits and extended on the left with copies of the most-significant bit.

bra symbol

0 0 1 1 0 0 0 0 0 I16 ///

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PC ← RepLeftBit(I16 || 0b00,32) & LSLR

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 176 of 278
Version 1.2

January 27, 2007

Branch Relative and Set Link Required v 1.0

Execution proceeds with the target instruction. In addition, a link register is set.

The address of the target instruction is computed by adding the value of the I16 field, extended on the right
with two zero bits with the result treated as a signed quantity, to the address of the Branch Relative and Set
Link instruction.

The preferred slot of register RT is set to the address of the byte following the Branch Relative and Set Link
instruction. The remaining slots of register RT are set to zero.

Programming Note: If the value of the I16 field is zero, an infinite one instruction loop is executed.

brsl rt,symbol

0 0 1 1 0 0 1 1 0 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← (PC + 4) & LSLR

RT4:15 ← 0

PC ← (PC + RepLeftBit(I16 || 0b00,32)) & LSLR

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 177 of 278

Branch Absolute and Set Link Required v 1.0

Execution proceeds with the target instruction. In addition, a link register is set.

The address of the target instruction is the value of the I16 field, extended on the right with two zero bits and
extended on the left with copies of the most-significant bit.

The preferred slot of register RT is set to the address of the byte following the Branch Absolute and Set Link
instruction. The remaining slots of register RT are set to zero.

brasl rt,symbol

0 0 1 1 0 0 0 1 0 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← (PC + 4) & LSLR

RT4:15 ← 0

PC ← RepLeftBit(I16 || 0b00,32) & LSLR

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 178 of 278
Version 1.2

January 27, 2007

Branch Indirect Required v 1.0

Execution proceeds with the instruction addressed by the preferred slot of register RA. The rightmost 2 bits of
the value in register RA are ignored and assumed to be zero. Interrupts can be enabled or disabled with the E
or D feature bits (see Section 12 SPU Interrupt Facility on page 251).

bi ra

0 0 1 1 0 1 0 1 0 0 0 / D E / / / / RA ///

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PC ← RA0:3 & LSLR & 0xFFFFFFFC
if (E = 0 and D = 0) then interrupt enable status is not modified
else if (E = 1 and D = 0) then enable interrupts at target
else if (E = 0 and D = 1) then disable interrupts at target
else if (E = 1 and D = 1) then reserved

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 179 of 278

Interrupt Return Required v 1.0

Execution proceeds with the instruction addressed by SRR0. RA is considered to be a valid source whose
value is ignored. Interrupts can be enabled or disabled with the E or D feature bits (see Section 12 SPU Inter-
rupt Facility on page 251).

iret ra

0 0 1 1 0 1 0 1 0 1 0 / D E / / / / RA ///

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PC ← SRR0

if (E = 0 and D = 0) then interrupt enable status is not modified
else if (E = 1 and D = 0) then enable interrupts at target
else if (E = 0 and D = 1) then disable interrupts at target
else if (E = 1 and D = 1) then reserved

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 180 of 278
Version 1.2

January 27, 2007

Branch Indirect and Set Link if External Data Required v 1.0

The external condition is examined. If it is false, execution continues with the next sequential instruction. If the
external condition is true, the effective address of the next instruction is taken from the preferred word slot of
register RA.

The address of the instruction following the bisled instruction is placed into the preferred word slot of register
RT; the remainder of register RT is set to zero.

If the branch is taken, interrupts can be enabled or disabled with the E or D feature bits (see Section 12 SPU
Interrupt Facility on page 251).

bisled rt,ra

0 0 1 1 0 1 0 1 0 1 1 / D E / / / / RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

u ← LSLR & (PC + 4)
t ← RA0:3 & LSLR & 0xFFFFFFFC
RT0:3 ← u
RT4:15 ← 0

if (external event) then
PC ← t
if (E = 0 and D = 0) then interrupt enable status is not modified
else if (E = 1 and D = 0) then enable interrupts at target
else if (E = 0 and D = 1) then disable interrupts at target
else if (E = 1 and D = 1) then reserved

else
PC ← u

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 181 of 278

Branch Indirect and Set Link Required v 1.0

The effective address of the next instruction is taken from the preferred word slot of register RA, with the
rightmost 2 bits assumed to be zero. The address of the instruction following the bisl instruction is placed into
the preferred word slot of register RT. The remainder of register RT is set to zero. Interrupts can be enabled
or disabled with the E or D feature bits (see Section 12 SPU Interrupt Facility on page 251).

bisl rt,ra

0 0 1 1 0 1 0 1 0 0 1 / D E / / / / RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RA0:3 & LSLR & 0xFFFFFFFC
u ← LSLR & (PC + 4)
RT0:3 ← u
RT4:15 ← 0x00
PC ← t

if (E = 0 and D = 0) then interrupt enable status is not modified
else if (E = 1 and D = 0) then enable interrupts at target
else if (E = 0 and D = 1) then disable interrupts at target
else if (E = 1 and D = 1) then reserved

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 182 of 278
Version 1.2

January 27, 2007

Branch If Not Zero Word Required v 1.0

Examine the preferred slot; if it is not zero, proceed with the branch target. Otherwise, proceed with the next
instruction.

The address of the branch target is computed by appending two zero bits to the value of the I16 field,
extending it on the left with copies of the most-significant bit, and adding it to the value of the instruction
counter.

brnz rt,symbol

0 0 1 0 0 0 0 1 0 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If RT0:3 ≠ 0 then
PC ← (PC + RepLeftBit(I16 || 0b00)) & LSLR & 0xFFFFFFFC

else
PC ← (PC+4) & LSLR

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 183 of 278

Branch If Zero Word Required v 1.0

Examine the preferred slot. If it is zero, proceed with the branch target. Otherwise, proceed with the
next instruction.

The address of the branch target is computed by appending two zero bits to the value of the I16 field,
extending it on the left with copies of the most-significant bit, and adding it to the value of the
instruction counter.

brz rt,symbol

0 0 1 0 0 0 0 0 0 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If RT0:3 = 0 then
PC ← (PC + RepLeftBit(I16 || 0b00)) & LSLR & 0xFFFFFFFC

else
PC ← (PC + 4) & LSLR

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 184 of 278
Version 1.2

January 27, 2007

Branch If Not Zero Halfword Required v 1.0

Examine the preferred slot. If the rightmost halfword is not zero, proceed with the branch target. Otherwise,
proceed with the next instruction.

The address of the branch target is computed by appending two zero bits to the value of the I16 field,
extending it on the left with copies of the most-significant bit, and adding it to the value of the instruction
counter.

brhnz rt,symbol

0 0 1 0 0 0 1 1 0 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If RT2:3 ≠ 0 then
PC ← (PC + RepLeftBit(I16 || 0b00)) & LSLR & 0xFFFFFFFC

else
PC ← (PC + 4) & LSLR

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 185 of 278

Branch If Zero Halfword Required v 1.0

Examine the preferred slot. If the rightmost halfword is zero, proceed with the branch target. Otherwise,
proceed with the next instruction.

The address of the branch target is computed by appending two zero bits to the value of the I16 field,
extending it on the left with copies of the most-significant bit, and adding it to the value of the instruction
counter.

brhz rt,symbol

0 0 1 0 0 0 1 0 0 I16 RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If RT2:3 = 0 then
PC ← (PC + RepLeftBit(I16 || 0b00)) & LSLR & 0xFFFFFFFC

else
PC ← (PC + 4) & LSLR

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 186 of 278
Version 1.2

January 27, 2007

Branch Indirect If Zero Required v 1.0

If the preferred slot of register RT is not zero, execution proceeds with the next sequential instruction. Other-
wise, execution proceeds at the address in the preferred slot of register RA, treating the rightmost 2 bits as
zero. If the branch is taken, interrupts can be enabled or disabled with the E or D feature bits (see Section 12
SPU Interrupt Facility on page 251).

biz rt,ra

0 0 1 0 0 1 0 1 0 0 0 / D E / / / / RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RA0:3 & LSLR & 0xFFFFFFFC
u ← LSLR & (PC + 4)

If RT0:3 = 0 then
PC ← t & LSLR & 0xFFFF FFFC
if (E = 0 and D = 0) then interrupt enable status is not modified
else if (E = 1 and D = 0) then enable interrupts at target
else if (E = 0 and D = 1) then disable interrupts at target
else if (E = 1 and D = 1) then reserved

else
PC ← u

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 187 of 278

Branch Indirect If Not Zero Required v 1.0

If the preferred slot of register RT is zero, execution proceeds with the next sequential instruction. Otherwise,
execution proceeds at the address in the preferred slot of register RA, treating the rightmost 2 bits as zero. If
the branch is taken, interrupts can be enabled or disabled with the E or D feature bits (see Section 12 SPU
Interrupt Facility on page 251).

binz rt,ra

0 0 1 0 0 1 0 1 0 0 1 / D E / / / / RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RA0:3 & LSLR & 0xFFFFFFFC
u ← LSLR & (PC + 4)

If RT0:3 != 0 then
PC ← t & LSLR & 0xFFFFFFFC
if (E = 0 and D = 0) then interrupt enable status is not modified
else if (E = 1 and D = 0) then enable interrupts at target
else if (E = 0 and D = 1) then disable interrupts at target
else if (E = 1 and D = 1) then reserved

else
PC ← u

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 188 of 278
Version 1.2

January 27, 2007

Branch Indirect If Zero Halfword Required v 1.0

If the rightmost halfword of the preferred slot of register RT is not zero, execution proceeds with the next
sequential instruction. Otherwise, execution proceeds at the address in the preferred slot of register RA,
treating the rightmost 2 bits as zero. If the branch is taken, interrupts can be enabled or disabled with the E or
D feature bits (see Section 12 SPU Interrupt Facility on page 251).

bihz rt,ra

0 0 1 0 0 1 0 1 0 1 0 / D E / / / / RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RA0:3 & LSLR & 0xFFFFFFFC
u ← LSLR & (PC + 4)

If RT2:3 = 0 then do
PC ← t & LSLR & 0xFFFFFFFC
if (E = 0 and D = 0) then interrupt enable status is not modified
else if (E = 1 and D = 0) then enable interrupts at target
else if (E = 0 and D = 1) then disable interrupts at target
else if (E = 1 and D = 1) then reserved

else
PC ← u

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Compare, Branch, and Halt Instructions

Page 189 of 278

Branch Indirect If Not Zero Halfword Required v 1.0

If the rightmost halfword of the preferred slot of register RT is zero, execution proceeds with the next sequen-
tial instruction. Otherwise, execution proceeds at the address in the preferred slot of register RA, treating the
rightmost 2 bits as zero. If the branch is taken, interrupts can be enabled or disabled with the E or D feature
bits (see Section 12 SPU Interrupt Facility on page 251).

bihnz rt,ra

0 0 1 0 0 1 0 1 0 1 1 / D E / / / / RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

t ← RA0:3 & LSLR & 0xFFFFFFFC
u ← LSLR & (PC + 4)

If RT2:3 != 0 then
PC ← t & LSLR & 0xFFFFFFFC
if (E = 0 and D = 0) then interrupt enable status is not modified
else if (E = 1 and D = 0) then enable interrupts at target
else if (E = 0 and D = 1) then disable interrupts at target
else if (E = 1 and D = 1) then reserved

else
PC ← u

Instruction Set Architecture

Synergistic Processor Unit

Compare, Branch, and Halt Instructions

Page 190 of 278
Version 1.2

January 27, 2007

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Hint-for-Branch Instructions

Page 191 of 278

8. Hint-for-Branch Instructions

This section lists and describes the SPU hint-for-branch instructions.

These instructions have no semantics. They provide a hint to the implementation about a future branch
instruction, with the intention that the information be used to improve performance by either prefetching the
branch target or by other means.

Each of the hint-for-branch instructions specifies the address of a branch instruction and the address of the
expected branch target address. If the expectation is that the branch is not taken, the target address is the
address of the instruction following the branch.

The instructions in this section use the variables brinst and brtarg, which are defined as follows:

• brinst = RO
• brtarg = I16

Instruction Set Architecture

Synergistic Processor Unit

Hint-for-Branch Instructions

Page 192 of 278
Version 1.2

January 27, 2007

Hint for Branch (r-form) Required v 1.0

The address of the branch target is given by the contents of the preferred slot of register RA. The RO field
gives the signed word offset from the hbr instruction to the branch instruction.

If the P feature bit is set, hbr does not hint a branch. Instead, it hints that this is the proper implementation-
specific moment to perform inline prefetching. Inline prefetching is the instruction fetch function necessary to
run linearly sequential program text. To obtain optimal performance, some implementations of the SPU may
require help scheduling these inline prefetches of local storage when the program is also doing loads and
stores. See the implementation-specific SPU documentation for information about when this might be benefi-
cial. When the P feature bit is set, the instruction ignores the value of RA. The relative offset (RO) field,
formed by concatenating ROH (high) and ROL (low), must be set to zero.

hbr brinst,brtarg

0 0 1 1 0 1 0 1 1 0 0 P /// ROH RA ROL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

branch target address ← RA0:3 & LSLR & 0xFFFFFFFC
branch instruction address ← (RepLeftBit(ROH || ROL || 0b00,32) + PC) & LSLR

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Hint-for-Branch Instructions

Page 193 of 278

Hint for Branch (a-form) Required v 1.0

The address of the branch target is specified by an address in the I16 field. The value has 2 bits of zero
appended on the right before it is used.

The RO field, formed by concatenating ROH (high) and ROL (low), gives the signed word offset from the hbra
instruction to the branch instruction.

hbra brinst,brtarg

0 0 0 1 0 0 0 R0H I16 R0L

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

branch target address ← RepLeftBit(I16 || 0b00,32) & LSLR
branch instruction address ← (RepLeftBit(ROH || ROL || 0b00,32) + PC) & LSLR

Instruction Set Architecture

Synergistic Processor Unit

Hint-for-Branch Instructions

Page 194 of 278
Version 1.2

January 27, 2007

Hint for Branch Relative Required v 1.0

The address of the branch target is specified by a word offset given in the I16 field. The signed I16 field is
added to the address of the hbrr instruction to determine the absolute address of the branch target.

The RO field, formed by concatenating ROH (high) and ROL (low), gives the signed word offset from the hbrr
instruction to the branch instruction.

hbrr brinst,brtarg

0 0 0 1 0 0 1 R0H I16 R0L

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

branch target address ← (RepLeftBit(I16 || 0b00,32) + PC) & LSLR
branch instruction address ← (RepLeftBit(ROH || ROL || 0b00,32) + PC) & LSLR

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 195 of 278

9. Floating-Point Instructions

This section describes the SPU floating-point instructions. This section also describes the differences
between SPU floating-point calculations and IEEE standard floating-point calculations. The single-precision,
floating-point instructions do not calculate results compliant with IEEE Standard 754. However, the data
formats for single-precision and double-precision floating-point numbers used in the SPU are the same as the
IEEE Standard 754.

Implementation Note: The architecture allows implementations to produce different results for floating-point
instructions. See the implementation-specific documentation for information about the results produced by an
implementation. To achieve the same results between implementations requires more than architectural com-
pliance.

9.1 Single Precision (Extended-Range Mode)

For single-precision operations, the range of normalized numbers is extended. However, the full range
defined in the standard is not implemented. The range of nonzero numbers that can be represented and
operated on in the SPU is between the minimum and maximum listed in Table 9-1. Table 9-1 also demon-
strates converting from a register value to a decimal value.

Zero has two representations:

• For a positive zero, all bits are zero; that is, the sign, exponent, and fraction are zero.

• For a negative zero, the sign is one; that is, the exponent and fraction are zero.

As inputs, both kinds of zero are supported; however, a zero result is always a positive zero.

Single-precision operations in the SPU have the following characteristics:

• Not a Number (NaN) is not supported as an operand and is not produced as a result.

• Infinity (Inf) is not supported. An operation that produces a magnitude greater than the largest number
representable in the target floating-point format instead produces a number with the appropriate sign, the
largest biased exponent, and a magnitude of all (binary) ones. It is important to note that the representa-

Table 9-1. Single-Precision (Extended-Range Mode) Minimum and Maximum Values

Number Format Minimum Positive
Magnitude (Smin)

Maximum Positive
Magnitude (Smax) Notes

Register Value 0x0080 0000 0x7FFF FFFF

Bit Fields
Sign 8-Bit Biased

Exponent
Fraction (implied
[1] and 23 bits) Sign 8-Bit Biased

Exponent
Fraction (implied
[1] and 23 bits) 1

0 00000001 [1.]000...000 0 11111111 [1.]111...111

Value in Powers of 2 + 2(1 - 127) 1 + 2(255 - 127) 2 - 2-23 2

Combined Exponent and Fraction 2-126 * (+1) 2128 * (+[2 - 2-23])

Value of Register in Decimal 1.2 * 10-38 6.8 * 1038

Notes:

1. The exponent field is biased by +127.

2. The value 2 - 2-23 is one least significant bit (LSb) less than 2.

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 196 of 278
Version 1.2

January 27, 2007

tion of Inf, which conforms to the IEEE standard, is interpreted by the SPU as a number that is smaller
than the largest number used on the SPU.

• Denorms are not supported and are treated as zero. Thus, an operation that would generate a denorm
under IEEE rules instead generates a positive zero. If a denorm is used as an operand, it is treated as a
zero.

• The only supported rounding mode is truncation (toward zero).

For single-precision extended-range arithmetic, four kinds of exception conditions are tested: overflow,
underflow, divide-by-zero, and IEEE noncompliant result.

• Overflow (OVF)

An overflow exception occurs when the magnitude of the result before rounding is bigger than the largest
positive representable number, Smax. If the operation in slice k produces an overflow, the OVF flag for
slice k in the Floating-Point Status and Control Register (FPSCR) is set, and the result is saturated to
Smax with the appropriate sign.

• Underflow (UNF)

An underflow exception occurs when the magnitude of the result before rounding is smaller than the
smallest positive representable number, Smin. If the operation in slice k produces an underflow, the UNF
flag for slice k in the FPSCR is set, and the result is saturated to a positive zero.

• Divide-by-Zero (DBZ)

A divide-by-zero exception occurs when the input of an estimate instruction has a zero exponent. If the
operation in slice k produces a divide-by-zero exception, the DBZ flag for slice k in the FPSCR is set.

• IEEE noncompliant result (DIFF)

A different-from-IEEE exception indicates that the result produced with extended-range arithmetic could
be different from the IEEE result. This occurs when one of the following conditions exists:

– Any of the inputs or the result has a maximal exponent (IEEE arithmetic treats such an operand as
NaN or Infinity; extended-range arithmetic treats them as normalized values.)

– Any of the inputs has a zero exponent and a nonzero fraction (IEEE arithmetic treats such an oper-
and as a denormal number; extended-range arithmetic treats them as a zero.)

– An underflow occurs; that is, the result before rounding is different from zero and the result after
rounding is zero.

If this happens for the operation in slice k, the DIFF flag for slice k in the FPSCR is set.

These exceptions can be set only by extended-range floating-point instructions. Table 9-2 lists the instruc-
tions for which exceptions can be set.

Table 9-2. Instructions and Exception Settings

Instruction Set OVF Set UNF Set DBZ Set DIFF

fa, fs, fm, fma, fms, fnms, fi Yes Yes No Yes

frest, frsqest No No Yes No

csflt, cuflt Yes Yes No Yes

cflts, cfltu, fceq, fcneq, fcgt, fcmgt No No No No

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 197 of 278

9.2 Double Precision

SPU double-precision instructions process 128-bit values as two SIMD double-precision operations. SIMD
slice 0 processes doubleword 0, and slice 1 processes doubleword 1. For double-precision operations,
normal IEEE semantics and definitions apply. The range of the nonzero numbers supported by this format is
between the minimum and the maximum listed in Table 9-3. Table 9-3 also demonstrates converting from a
register value to a decimal value.

Double-precision operations in the SPU have the following characteristics:

• Only a subset of the operations required by the IEEE standard is supported in hardware.

• All four rounding modes are supported.

• The rounding modes for the two slices can be controlled independently. The RN0 field (bits 20 - 21) in the
FPSCR specifies the current rounding mode for slice 0; the RN1 field (bits 22 -23) in the FPSCR specifies
the current rounding modes for slice 1.

• The IEEE exceptions are detected and accumulated in the FPSCR. Trapping is not supported.

• The IEEE standard recognizes two kind of NaNs. These are values that have the maximum biased expo-
nent value and a nonzero fraction value. The sign bit is ignored. If the high-order bit of the fraction field is
0b0, then the NaN is a Signaling NaN (SNaN); otherwise, it is a Quiet NaN (QNaN). When a QNaN is the
result of a floating-point operation that has no NaN inputs, the result is always the default QNaN. That is,
the high-order bit of the fraction field is 0b1, all the other bits of the fraction field are zero, and the sign bit
is zero.

• The IEEE standard has very strict rules on the propagation of NaNs. When a QNaN is the result of a float-
ing-point operation that has at least one NaN input, an SPU implementation can either produce the
default QNaN or one of the input NaN values. If an implementation produces a QNaN result rather than
propagating the proper input NaN, QNaN, or SNaN; the NaN flag in the FPSCR is set to signal a possibly
noncompliant result.

Table 9-3. Double-Precision (IEEE Mode) Minimum and Maximum Values

Number Format Minimum Positive
Denormalized Magnitude (Dmin)

Maximum Positive
Normalized Magnitude (Dmax) Notes

Register Value 0x0000 0000 0000 0001 0x7FEF FFFF FFFF FFFF

Bit Fields
Sign 11-Bit Biased

Exponent

Fraction (implied
[0] and 52 bits
for denormal-
ized number)

Sign 11-Bit Biased
Exponent

Fraction (implied
[1] and 52 bits
for normalized

number)

1

0 00000000000 [0.]000...001 0 11111111110 [1.]111...111 2

Value in Powers of 2 + 2(0 + 1 - 1023) 2-52 + 2(2046 - 1023) 2 - 2-52 3,4

Combined Exponent and Fraction 2-1022 * (+2-52) 21023 * (+[2 - 2-52])

Value of Register in Decimal 4.9 *10-324 1.8 * 10308

Notes:

1. The exponent is biased by +1023.

2. An exponent field of all ones is reserved for not-a-number (NaN) and infinity.

3. The value 2 - 2-52 is one LSb less than 2.

4. An extra 1 is added to the exponent for denormalized numbers.

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 198 of 278
Version 1.2

January 27, 2007

• Some implementations might support denorms only as results. Such an implementation treats denormal
operands as zeros (this also applies to the setting of the IEEE flags); the sign of the operand is pre-
served. Whenever a denormal operand is forced to zero, the DENORM flag in the FPSCR is set to signal
a possibly noncompliant result.

9.2.1 Conversions Between Single-Precision and Double-Precision Format

There are two types of conversions: one rounds a double-precision number to a single-precision number
(frds); the other extends a single-precision number to a double-precision number (fesd). Both operations
comply with the IEEE standard, except for the handling of denormal inputs. Some implementations may force
denormal values to zero. When an implementation forces a denormal input to zero, it sets the DENORM flag
rather than the Underflow flag in the FPSCR. Thus, for these two operations, NaNs, infinities, and denormal
results are supported in double-precision format as well as in single-precision format. The range of nonzero
IEEE single-precision numbers supported is between the minimum and the maximum listed in Table 9-4.
Table 9-4 also demonstrates converting from a register value to a decimal value.

9.2.2 Exception Conditions

This architecture only supports nontrap exception handling; that is, exception conditions are detected and
reported in the appropriate fields of the FPSCR. These flags are sticky; once set, they remain set until they
are cleared by an FPSCR-write instruction. These exception flags are not set by the single-precision opera-
tions executed in the extended range. Because the double-precision operations are 2-way SIMD, there are
two sets of these flags.

Inexact Result (INX)
An inexact result is detected when the delivered result value differs from what would have been computed if
both the exponent range and precision were unbounded.

Overflow (OVF)
An overflow occurs when the magnitude of what would have been the rounded result if the exponent range
were unbounded exceeds that of the largest finite number of the specified result precision.

Table 9-4. Single-Precision (IEEE Mode) Minimum and Maximum Values

Number Format Minimum Positive
Denormalized Magnitude (Smin)

Maximum Positive
Magnitude (Smax) Notes

Register Value 0x00000001 0x7F7FFFFF

Bit Fields Sign 8-Bit Biased
Exponent

Fraction (implied
[0] and 23 bits) Sign 8-Bit Biased

Exponent
Fraction (implied
[1] and 23 bits) 1

0 00000000 [0.]000..001 0 11111110 [1.]111...111

Value in Powers of 2 + 2(0+1-127) 2-23 + 2(254-127) 2 - 2-23 2

Combined Exponent and Fraction 2-126 * 2-23 2127 * (2 - 2-23)

Value of Register in Decimal 1.4 * 10-45 3.4 * 1038

Notes:

1. The exponent field is biased by +127.

2. The value 2 - 2-23 is 1 LSb less than 2.

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 199 of 278

Underflow (UNF)
For nontrap exception handling, the IEEE 754 standard defines the underflow (UNF) as the following:

UNF = tiny AND loss_of_accuracy

Where there are two definitions each for tiny and loss of accuracy, and the implementation is free to
choose any of the four combinations. This architecture implements tiny-before-rounding and inexact
result (INX), thus:

UNF = tiny_before_rounding AND inexact_result

Note: Tiny before rounding is detected when a nonzero result value, computed as though the exponent
range were unbounded, would be less in magnitude than the smallest normalized number.

Invalid Operation (INV)
An invalid operation exception occurs whenever an operand is invalid for the specified operation. For opera-
tions implemented in hardware, the following operations give rise to an invalid operation exception condition:

• Any floating-point operation on a signaling NaN (SNaN)

• For add, subtract, and fused multiply add operations on magnitude subtraction of infinities; that is,
infinity - infinity

• Multiplication of infinity by zero.

Note: Some implementations may treat denormal inputs as zeros and set both the DENORM flag and
the Invalid Operation flag.

Not Propagated NaN (NaN)
The IEEE standard requires special handling of input NaNs, but SPU implementations can deliver the default
QNaN as a result of double-precision operations. When at least one of the inputs is a NaN, the resulting
QNaN can differ from the result delivered by a design that is fully compliant with the IEEE standard. This is
flagged in the NaN field.

Denormal Input Forced to Zero (DENORM)
SPU implementations can force certain double-precision denormal operands to zeros before the processing
of double-precision operations. If an implementation forces these operands to zeros, the zero will preserve
the sign of the original denormal value. When a denormal input is forced to zero, the DENORM exception flag
is set in the FPSCR to signal that the result could differ from an IEEE-compliant result.

Programming Note: Applications that require IEEE-compliant double-precision results can use the NaN and
DENORM flags in the FPSCR to detect noncompliant results. This allows the code to be re-executed in a less
efficient but compliant manner. Both flags are sticky, so that large blocks of code can be guarded, minimizing
the overhead of the code checking. For example,

clear fpscr
fast code block
if (NaN||DENORM)

{
compliant code block
}

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 200 of 278
Version 1.2

January 27, 2007

On SPUs within CBEA-compliant processors, the SPU can stop and signal the PPE to request that the PPE
perform the calculation and then restart the SPU.

Table 9-5 lists the instructions for which exceptions can be set.

9.3 Floating-Point Status and Control Register

The Floating-Point Status and Control Register (FPSCR) records the status resulting from the floating-point
operations and controls the rounding mode for double-precision operations. The FPSCR is read by the
FPSCR read instruction (fscrrd) and written with the FPSCR write instruction (fscrwr). Bits [20:23] are
control bits; the remaining bits are either status bits or unused. All the status bits in the FPSCR are sticky.
That is, once set, the sticky bits remain set until they are cleared by an fscrwr instruction.

The format of the FPSCR is as follows.

Table 9-5. Instructions and Exception Settings

Instruction Set OVF Set UNF Set INX Set INV Set NAN Set DENORM

dfa, dfs, dfm, dfma, dfms, dfnms, dfnma Yes Yes Yes Yes Yes Yes

fesd No No No Yes Yes Yes

frds Yes Yes Yes Yes Yes Yes

Bits Description

0:19 Unused

20:21 Rounding control for slice 0 of the 2-way SIMD double-precision operations (RN0)
00 Round to nearest even
01 Round towards zero (truncate)
10 Round towards +infinity
11 Round towards -infinity

22:23 Rounding control for slice 1 of the 2-way SIMD double-precision operations (RN1)
00 Round to nearest even
01 Round towards zero (truncate)
10 Round towards +infinity
11 Round towards -infinity

24:28 Unused

29:31 Single-precision exception flags for slice 0
29 Overflow (OVF)
30 Underflow (UNF)
31 Result produced with extended-range arithmetic could be different from the IEEE compliant result (DIFF)

32:49 Unused

50:55 IEEE exception flags for slice 0 of the 2-way SIMD double-precision operations
50 Overflow (OVF)
51 Underflow (UNF)
52 Inexact result (INX)
53 Invalid operation (INV)
54 Possibly noncompliant result because of QNaN propagation (NaN)
55 Possibly noncompliant result because of denormal operand (DENORM)

56:60 Unused

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 201 of 278

61:63 Single-precision exception flags for slice 1 (OVF, UNF, DIFF)

64:81 Unused

82:87 IEEE exception flags for slice 1 of the 2-way SIMD double-precision operations (OVF, UNF, INX, INV, NAN, DENORM)

88:92 Unused

93:95 Single-precision exception flags for slice 2 (OVF, UNF, DIFF)

96:115 Unused

116:119 Single-precision divide-by-zero flags for each of the four slices
116 DBZ for slice 0
117 DBZ for slice 1
118 DBZ for slice 2
119 DBZ for slice 3

120:124 Unused

125:127 Single-precision exception flags for slice 3 (OVF, UNF, DIFF)

Bits Description

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 202 of 278
Version 1.2

January 27, 2007

Floating Add Required v 1.0

For each of the four word slots:

• The operand from register RA is added to the operand from register RB.

• The result is placed in register RT.

• If the magnitude of the result is greater than Smax, then Smax (with the correct sign) is produced as the
result. If the magnitude of the result is less than Smin, then zero is produced.

fa rt,ra,rb

0 1 0 1 1 0 0 0 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 203 of 278

Double Floating Add Required v 1.0

For each of two doubleword slots:

• The operand from register RA is added to the operand from register RB.

• The result is placed in register RT.

dfa rt,ra,rb

0 1 0 1 1 0 0 1 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 204 of 278
Version 1.2

January 27, 2007

Floating Subtract Required v 1.0

For each of the four word slots:

• The operand from register RB is subtracted from the operand from register RA.

• The result is placed in register RT.

• If the magnitude of the result is greater than Smax, then Smax (with the correct sign) is produced as the
result. If the magnitude of the result is less than Smin, then zero is produced.

fs rt,ra,rb

0 1 0 1 1 0 0 0 1 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 205 of 278

Double Floating Subtract Required v 1.0

For each of two doubleword slots:

• The operand from register RB is subtracted from the operand from register RA.

• The result is placed in register RT.

dfs rt,ra,rb

0 1 0 1 1 0 0 1 1 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 206 of 278
Version 1.2

January 27, 2007

Floating Multiply Required v 1.0

For each of the four word slots:

• The operand from register RA is multiplied by the operand from register RB.

• The result is placed in register RT.

• If the magnitude of the result is greater than Smax, then Smax (with the correct sign) is produced. If the
magnitude of the result is less than Smin, then zero is produced.

fm rt,ra,rb

0 1 0 1 1 0 0 0 1 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 207 of 278

Double Floating Multiply Required v 1.0

For each of two doubleword slots:

• The operand from register RA is multiplied by the operand from register RB.

• The result is placed in register RT.

dfm rt,ra,rb

0 1 0 1 1 0 0 1 1 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 208 of 278
Version 1.2

January 27, 2007

Floating Multiply and Add Required v 1.0

For each of the four word slots:

• The operand from register RA is multiplied by the operand from register RB and added to the operand
from register RC. The multiplication is exact and not subject to limits on its range.

• The result is placed in register RT.

• If the magnitude of the result of the addition is greater than Smax, then Smax (with the correct sign) is
produced. If the magnitude of the result is less than Smin, then zero is produced.

fma rt,ra,rb,rc

1 1 1 0 RT RB RA RC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 209 of 278

Double Floating Multiply and Add Required v 1.0

For each of two doubleword slots:

• The operand from register RA is multiplied by the operand from register RB and added to the operand
from register RT. The multiplication is exact and not subject to limits on its range.

• The result is placed in register RT.

dfma rt,ra,rb

0 1 1 0 1 0 1 1 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 210 of 278
Version 1.2

January 27, 2007

Floating Negative Multiply and Subtract Required v 1.0

For each of the four word slots:

• The operand from register RA is multiplied by the operand from register RB, and the product is subtracted
from the operand from register RC. The result of the multiplication is exact and not subject to limits on its
range.

• The result is placed in register RT.

• If the magnitude of the result of the subtraction is greater than Smax, then Smax (with the correct sign) is
produced. If the magnitude of the result of the subtraction is less than Smin, then zero is produced.

fnms rt,ra,rb,rc

1 1 0 1 RT RB RA RC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 211 of 278

Double Floating Negative Multiply and Subtract Required v 1.0

For each of two doubleword slots:

• The operand from register RA is multiplied by the operand from register RB. The operand from
register RT is subtracted from the product. The result, which is placed in register RT, is usually obtained
by negating the rounded result of this multiply subtract operation. There is one exception: If the result is a
QNaN, the sign bit of the result is zero.

• This instruction produces the same result as would be obtained by using the Double Floating Multiply and
Subtract instruction and then negates any result that is not a NaN.

• The multiplication is exact and not subject to limits on its range.

dfnms rt,ra,rb

0 1 1 0 1 0 1 1 1 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 212 of 278
Version 1.2

January 27, 2007

Floating Multiply and Subtract Required v 1.0

For each of the four word slots:

• The operand from register RA is multiplied by the operand from register RB. The result of the multiplica-
tion is exact and not subject to limits on its range. The operand from register RC is subtracted from the
product.

• The result is placed in register RT.

• If the magnitude of the result of the subtraction is greater than Smax, then Smax (with the correct sign) is
produced. If the magnitude of the result of the subtraction is less than Smin, then zero is produced.

fms rt,ra,rb,rc

1 1 1 1 RT RB RA RC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 213 of 278

Double Floating Multiply and Subtract Required v 1.0

For each of two doubleword slots:

• The operand from register RA is multiplied by the operand from register RB. The multiplication is exact
and not subject to limits on its range. The operand from register RT is subtracted from the product.

• The result is placed in register RT.

dfms rt,ra,rb

0 1 1 0 1 0 1 1 1 0 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 214 of 278
Version 1.2

January 27, 2007

Double Floating Negative Multiply and Add Required v 1.0

For each of two doubleword slots:

• The operand from register RA is multiplied by the operand from register RB and added to the operand
from register RT. The multiplication is exact and not subject to limits on its range. The result, which is
placed in register RT, is usually obtained by negating the rounded result of this multiply add operation.
There is one exception: If the result is a QNaN, the sign bit of the result is 0.

• This instruction produces the same result as would be obtained by using the Double Floating Multiply and
Add instruction and then negating any result that is not a NaN.

dfnma rt,ra,rb

0 1 1 0 1 0 1 1 1 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 215 of 278

Floating Reciprocal Estimate Required v 1.0

For each of four word slots:

• The operand in register RA is used to compute a base and a step for estimating the reciprocal of the
operand. The result, in the form shown below, is placed in register RT. S is the sign bit of the base result.

• The base result is expressed as a floating-point number with 13 bits in the fraction, rather than the usual
23 bits. The remaining 10 bits of the fraction are used to encode the magnitude of the step as a 10-bit
denormal fraction; the exponent is that of the base.

• The step fraction differs from the base fraction (and any normalized IEEE fraction) in that there is a ‘0’ in
front of the binary point and three additional bits of ‘0’ between the binary point and the fraction. The rep-
resented numbers are as follows:

• Let x be the initial value in register RA. The result placed in RT, which is interpreted as a regular IEEE
number, provides an estimate of the reciprocal of a nonzero x.

• If the operand in register RA has a zero exponent, a divide-by-zero exception is flagged.

Programming Note: The result returned by this instruction is intended as an operand for the Floating Inter-
polate instruction.

The quality of the estimate produced by the Floating Reciprocal Estimate instruction is sufficient to produce a
result within 1 ulp of the IEEE single-precision reciprocal after interpolation and a single step of Newton-
Raphson. Consider this code sequence:

FREST y0,x // table-lookup
FI y1,x,y0 // interpolation
FNMS t1,x,y1,ONE // t1 = -(x * y1 - 1.0)
FMA y2,t1,y1,y1 // y2 = t1 * y1 + y1

Three ranges of input must be described separately:

frest rt,ra

0 0 1 1 0 1 1 1 0 0 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S Biased Exponent BaseFraction StepFraction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Base S 1.BaseFraction * 2BiasedExponent - 127

Step 0.000 StepFraction * 2BiasedExponent - 127

Zeros 1/0 is defined to give the maximum SPU single-precision extended-range floating point (sfp)
number:

y2 = x‘7FFF FFFF’ (1.999 * 2128)

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 216 of 278
Version 1.2

January 27, 2007

Big If |x| ≥ 2126, then 1/x underflows to zero, y2 = 0.

Note: This underflows for one value of x that IEEE single-precision reciprocal would not. If
this is a concern, the following code sequence produces the IEEE answer:

maxnounderflow = 0x7e800000
min = 0x00800000
msb = 0x80000000
FCMEQ selmask,x,maxnounderflow
AND s1,x,msb
OR smin,s1,min
SELB y3,selmask,y2,smin

Normal 1/x = Y where x * Y < 1.0 and x * INC(Y) ≥ 1.0.
INC(y) gives the sfp number with the same sign as y and next larger magnitude.
The absolute error bound is:

| Y - y2 | ≤ 1 ulp (either y2 = Y, or INC(y2) = Y)

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 217 of 278

Floating Reciprocal Absolute Square Root Estimate Required v 1.0

For each of four word slots:

• The operand in register RA is used to compute a base and step for estimating the reciprocal of the square
root of the absolute value of the operand. The result is placed in register RT. The sign bit (S) will be zero.

• Let x be the initial value of register RA. The result placed in register RT, interpreted as a regular IEEE
number, provides an estimate of the reciprocal square root of abs(x).

• If the operand in register RA has a zero exponent, a divide-by-zero exception is flagged.

Programming Note: The result returned by this instruction is intended as an operand for the Floating
Interpolate instruction.

The quality of the estimate produced by the Floating Reciprocal Absolute Square Root Estimate instruction is
sufficient to produce an IEEE single-precision reciprocal after interpolation and a single step of Newton-
Raphson. Consider the following code sequence:

mask=0x7fffffff
half=0.5
one=1.0
FRSQEST y0,x // table-lookup
AND ax,x,mask // ax = ABS(x)
FI y1,ax,y0 // interpolation
FM t1,ax,y1 // t1 = ax * y1
FM t2,y1,HALF // t2 = y1 * 0.5
FNMS t1,t1,y1,ONE // t1 = -(t1 * y1 - 1.0)
FMA y2,t1,t2,y1 // y2 = t1 * t2 + y1

Three ranges of input must be described separately:

frsqest rt,ra

0 0 1 1 0 1 1 1 0 0 1 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

S Biased Exponent BaseFraction StepFraction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Zeros, where: x fraction ≤ 0x000ff53c then y2 = 0x7fffffff (1.999 * 2128)

Zeros where: x fraction > 0x000ff53c, y2 ≥ 0x7fc00000

The following sequence could be used to correct the answer:

zero = 0.0
mask = 0x7fffffff
FCMEQ z,x,zero
AND zmask,z,mask
OR y3,zmask,y2

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 218 of 278
Version 1.2

January 27, 2007

Normal 1/sqrt(x) = Y where x * Y2 < 1.0 and x * INC(Y)2 ≥ 1.0
INC(y) gives the sfp number with the same sign as y and next larger magnitude.
The absolute error bound is:

| Y - y2 | ≤ 1 ulp (0 and ±1 are all possible)

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 219 of 278

Floating Interpolate Required v 1.0

For each of four word slots:

• The operand in register RB is disassembled to produce a floating-point base and step according to the
format described in Floating Reciprocal Estimate on page 215; that is, a sign, biased exponent, base
fraction, and step fraction.

• Bits 13 to 31 of register RA are taken to represent a fraction, Y, whose binary point is to the left of bit 13;
that is, Y ← 0.RA13:31.

The result is computed by the following equation:

RT ← (-1)S * (1.BaseFraction - 0.000StepFraction * Y) * 2(BiasedExponent -127)

Programming Note: If the operand in register RB is the result of an frest or frsqest instruction with the oper-
and from register RA, then the result of the fi instruction placed in register RT provides a more accurate esti-
mation.

fi rt,ra,rb

0 1 1 1 1 0 1 0 1 0 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 220 of 278
Version 1.2

January 27, 2007

Convert Signed Integer to Floating Required v 1.0

For each of four word slots:

• The signed 32-bit integer value in register RA is converted to an extended-range, single-precision, float-
ing-point value.

• The result is divided by 2scale and placed in register RT. The factor scale is an 8-bit unsigned integer pro-
vided by 155 minus the unsigned value from the I8 field. If the value scale is not in the range of 0 to 127,
the result of the operation is undefined.

• The scale factor describes the number of bit positions between the binary point of the magnitude and the
right end of register RA. A scale factor of zero means that the register RA value is an unscaled integer.

csflt rt,ra,scale

0 1 1 1 0 1 1 0 1 0 I8 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 221 of 278

Convert Floating to Signed Integer Required v 1.0

For each of four word slots:

• The extended-range, single-precision, floating-point value in register RA is multiplied by 2scale. The factor
scale is an 8-bit unsigned integer provided by 173 minus the unsigned value from the I8 field. If the value
scale is not in the range of 0 to 127, the result of the operation is undefined.

• The product is converted to a signed 32-bit integer. If the intermediate result is greater than (231 - 1), it
saturates to (231 - 1); if it is less than -231, it saturates to -231. The resulting signed integer is placed in
register RT.

• The scale factor is the location of the binary point of the result, expressed as the number of bit positions
from the right end of the register RT. A scale factor of zero means that the value in register RT is an
unscaled integer.

cflts rt,ra,scale

0 1 1 1 0 1 1 0 0 0 I8 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 222 of 278
Version 1.2

January 27, 2007

Convert Unsigned Integer to Floating Required v 1.0

For each of four word slots:

• The unsigned 32-bit integer value in register RA is converted to an extended-range, single-precision,
floating-point value.

• The result is divided by 2scale and placed in register RT. The factor scale is an 8-bit unsigned integer pro-
vided by 155 minus the unsigned value from the I8 field. If the value scale is not in the range of 0 to 127,
the result of the operation is undefined.

• The scale factor describes the number of bit positions between the binary point of the magnitude and the
right end of register RA. A scale factor of zero means that the register RA value is an unscaled integer.

cuflt rt,ra,scale

0 1 1 1 0 1 1 0 1 1 I8 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 223 of 278

Convert Floating to Unsigned Integer Required v 1.0

For each of four word slots:

• The extended-range, single-precision, floating-point value in register RA is multiplied by 2scale. The factor
scale is an 8-bit unsigned integer provided by 173 minus the unsigned value from the I8 field. If the value
scale is not in the range of 0 to 127, the result of the operation is undefined.

• The product is converted to an unsigned 32-bit integer. If the intermediate result is greater than (232 - 1) it
saturates to (232 - 1). If the product is negative, it saturates to zero. The resulting unsigned integer is
placed in register RT.

• The scale factor is the location of the binary point of the result, expressed as the number of bit positions
from the right end of the register RT. A scale factor of zero means that the value in RT is an unscaled inte-
ger.

cfltu rt,ra,scale

0 1 1 1 0 1 1 0 0 1 I8 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 224 of 278
Version 1.2

January 27, 2007

Floating Round Double to Single Required v 1.0

For each of two doubleword slots:

• The double-precision value in register RA is rounded to a single-precision, floating-point value and placed
in the left word slot. The conversions are done as described in Section 9.2.1 Conversions Between Sin-
gle-Precision and Double-Precision Format on page 198. Zeros are placed in the right word slot.

• The rounding is performed in accordance with the rounding mode specified in the Floating-Point Status
Register. Double-precision exceptions are detected and accumulated in the Floating-Point Unit (FPU)
Status Register.

frds rt,ra

0 1 1 1 0 1 1 1 0 0 1 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 225 of 278

Floating Extend Single to Double Required v 1.0

For each of two doubleword slots:

• The single-precision value in the left slot of register RA is converted to a double-precision, floating-point
value and placed in register RT. The conversions are done as described in Section 9.2.1 Conversions
Between Single-Precision and Double-Precision Format on page 198. The contents of the right word slot
are ignored.

• Double-precision exceptions are detected and accumulated in the FPU Status Register.

fesd rt,ra

0 1 1 1 0 1 1 1 0 0 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 226 of 278
Version 1.2

January 27, 2007

Double Floating Compare Equal Optional v 1.2

For each of the two doubleword slots:

• The double-precision floating-point value from register RA is compared with the double-precision floating-
point value from register RB. If the values are equal, a result of all ones (true) is produced in register RT.
Otherwise, a result of zero (false) is produced in register RT.

• Two zeros always compare equal independent of their signs.

• A NaN compares false against all other operands. Even two NaNs with identical bit patterns generate
false.

• When accessing a NaN, the corresponding INV exception bit in the FPSCR is set.

dfceq rt,ra,rb

0 1 1 1 1 0 0 0 0 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 227 of 278

Double Floating Compare Magnitude Equal Optional v 1.2

For each of the two doubleword slots:

• The absolute value of the double-precision floating-point number in register RA is compared with the
absolute value of the double-precision floating-point number in register RB. If the absolute values are
equal, a result of all ones (true) is produced in register RT. Otherwise, a result of zero (false) is produced
in register RT.

• Two zeros always compare equal independent of their signs.

• A NaN compares false against all other operands. Even two NaNs with identical bit patterns generate
false.

• When accessing a NaN, the corresponding INV exception bit in the FPSCR is set.

dfcmeq rt,ra,rb

0 1 1 1 1 0 0 1 0 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 228 of 278
Version 1.2

January 27, 2007

Double Floating Compare Greater Than Optional v 1.2

For each of the two doubleword slots:

• The double-precision floating-point value in register RA is compared with the double-precision floating-
point value in register RB. If the value in RA is greater than the value in RB, a result of all ones (true) is
produced in register RT. Otherwise, a result of zero (false) is produced in register RT.

• Two zeros never compare greater than, independent of their sign bits.

• A NaN compares false against all other operands. Even two NaNs with identical bit patterns generate
false.

• When accessing a NaN, the corresponding INV exception bit in the FPSCR is set.

dfcgt rt,ra,rb

0 1 0 1 1 0 0 0 0 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 229 of 278

Double Floating Compare Magnitude Greater Than Optional v 1.2

For each of the two doubleword slots:

• The absolute value of the double-precision floating-point number in register RA is compared with the
absolute value of the double-precision floating-point number in register RB. If the absolute value of the
value from register RA is greater than the absolute value of the value from register RB, a result of all ones
(true) is produced in register RT. Otherwise, a result of zero (false) is produced in register RT.

• Two zeros never compare greater than, independent of their signs.

• A NaN compares false against all other operands. Even two NaNs with identical bit patterns generate
false.

• When accessing a NaN, the corresponding INV exception bit in the FPSCR is set.

dfcmgt rt,ra,rb

0 1 0 1 1 0 0 1 0 1 1 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 230 of 278
Version 1.2

January 27, 2007

Double Floating Test Special Value Optional v 1.2

For each of two doubleword slots:

• The double-precision floating-point value in register RA is tested for special values. The bits of I7 enable
the following seven checks

• If one or more of the enabled checks is true, a result of all ones is produced in register RT. When none of
the enabled checks is met, a result of all zeros is produced in register RT.

dftsv rt,ra,value

0 1 1 1 0 1 1 1 1 1 1 I7 RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

I7 RA Value Category

1000000 NaN

0100000 +Infinity

0010000 -Infinity

0001000 +0

0000100 -0

0000010 Positive Denorm

0000001 Negative Denorm

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 231 of 278

Floating Compare Equal Required v 1.0

For each of four word slots:

• The floating-point value from register RA is compared with the floating-point value from register RB. If the
values are equal, a result of all ones (true) is produced in register RT. Otherwise, a result of zero (false) is
produced in register RT. Two zeros always compare equal independent of their fractions and signs.

• This instruction is always executed in extended-range mode and ignores the setting of the mode bit.

fceq rt,ra,rb

0 1 1 1 1 0 0 0 0 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 232 of 278
Version 1.2

January 27, 2007

Floating Compare Magnitude Equal Required v 1.0

For each of four word slots:

• The absolute value of the floating-point number in register RA is compared with the absolute value of the
floating-point number in register RB. If the absolute values are equal, a result of all ones (true) is pro-
duced in register RT. Otherwise, a result of zero (false) is produced in register RT. Two zeros always com-
pare equal independent of their fractions and signs.

• This instruction is always executed in extended-range mode and ignores the setting of the mode bit.

fcmeq rt,ra,rb

0 1 1 1 1 0 0 1 0 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 233 of 278

Floating Compare Greater Than Required v 1.0

For each of four word slots:

• The floating-point value in register RA is compared with the floating-point value in register RB. If the value
in RA is greater than the value in RB, a result of all ones (true) is produced in register RT. Otherwise, a
result of zero (false) is produced in register RT. Two zeros never compare greater than independent of
their sign bits and fractions.

• This instruction is always executed in extended-range mode, and ignores the setting of the mode bit.

fcgt rt,ra,rb

0 1 0 1 1 0 0 0 0 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 234 of 278
Version 1.2

January 27, 2007

Floating Compare Magnitude Greater Than Required v 1.0

For each of four word slots:

• The absolute value of the floating-point number in register RA is compared with the absolute value of the
floating-point number in register RB. If the absolute value of the value from register RA is greater than the
absolute value of the value from register RB, a result of all ones (true) is produced in register RT. Other-
wise, a result of zero (false) is produced in register RT. Two zeros never compare greater than, indepen-
dent of their fractions and signs.

• This instruction is always executed in extended-range mode, and ignores the setting of the mode bit.

fcmgt rt,ra,rb

0 1 0 1 1 0 0 1 0 1 0 RB RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Floating-Point Instructions

Page 235 of 278

Floating-Point Status and Control Register Write Required v 1.0

The 128-bit value of register RA is written into the FPSCR. The value of the unused bits in the FPSCR is
undefined. RT is a false target. Implementations can schedule instructions as though this instruction
produces a value into RT. Programs can avoid unnecessary delay by programming RT so as not to appear to
source data for nearby subsequent instructions. False targets are not written.

fscrwr ra

0 1 1 1 0 1 1 1 0 1 0 /// RA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Floating-Point Instructions

Page 236 of 278
Version 1.2

January 27, 2007

Floating-Point Status and Control Register Read Required v 1.0

This instruction reads the value of the FPSCR. In the result, the unused bits of the FPSCR are forced to zero.
The result is placed in the register RT.

fscrrd rt

0 1 1 1 0 0 1 1 0 0 0 /// /// RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Control Instructions

Page 237 of 278

10. Control Instructions

This section lists and describes the SPU control instructions.

Instruction Set Architecture

Synergistic Processor Unit

Control Instructions

Page 238 of 278
Version 1.2

January 27, 2007

Stop and Signal Required v 1.0

Execution of the program in the SPU stops, and the external environment is signaled. No further instructions
are executed.

stop

0 0 0 0 0 0 0 0 0 0 0 /// Stop and Signal Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PC ← PC + 4 & LSLR
precise stop

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Control Instructions

Page 239 of 278

Stop and Signal with Dependencies Required v 1.0

Execution of the program in the SPU stops.

Programming Note: This instruction differs from stop only in that, in typical implementations, instructions
with dependencies can be replaced with stopd to create a breakpoint without affecting the instruction timings.

stopd

0 0 1 0 1 0 0 0 0 0 0 RB RA RC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PC ← PC + 4 & LSLR
precise stop

Instruction Set Architecture

Synergistic Processor Unit

Control Instructions

Page 240 of 278
Version 1.2

January 27, 2007

No Operation (Load) Required v 1.0

This instruction has no effect on the execution of the program. It exists to provide implementation-defined
control of instruction issuance.

lnop

0 0 0 0 0 0 0 0 0 0 1 /// /// ///

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Control Instructions

Page 241 of 278

No Operation (Execute) Required v 1.0

This instruction has no effect on the execution of the program. It exists to provide implementation-defined
control of instruction issuance. RT is a false target. Implementations can schedule instructions as though this
instruction produces a value into RT. Programs can avoid unnecessary delay by programming RT so as not
to appear to source data for nearby subsequent instructions. False targets are not written.

nop

0 1 0 0 0 0 0 0 0 0 1 /// /// RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Control Instructions

Page 242 of 278
Version 1.2

January 27, 2007

Synchronize Required v 1.0

This instruction has no effect on the execution of the program other than to cause the processor to wait until
all pending store instructions have completed before fetching the next sequential instruction. This instruction
must be used following a store instruction that modifies the instruction stream.

The C feature bit causes channel synchronization to occur before instruction synchronization occurs.
Channel synchronization allows an SPU state modified through channel instructions to affect execution.
Synchronization is discussed in more detail in Section 13 Synchronization and Ordering on page 253.

sync

0 0 0 0 0 0 0 0 0 1 0 C ///

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Control Instructions

Page 243 of 278

Synchronize Data Required v 1.0

This instruction forces all earlier load, store, and channel instructions to complete before proceeding. No
subsequent load, store, or channel instructions can start until the previous instructions complete. The dsync
instruction allows SPU software to ensure that the local storage data would be consistent if it were observed
by another entity. This instruction does not affect any prefetching of instructions that the processor might
have done. Synchronization is discussed in more detail in Section 13 Synchronization and Ordering on
page 253.

dsync

0 0 0 0 0 0 0 0 0 1 1 /// /// ///

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction Set Architecture

Synergistic Processor Unit

Control Instructions

Page 244 of 278
Version 1.2

January 27, 2007

Move from Special-Purpose Register Required v 1.0

Special-Purpose Register SA is copied into register RT. If SPR SA is not defined, zeros are supplied.

Note: The SPU ISA defines the mtspr and mfspr instructions as 128-bit operations. An implementation
might define 32-bit wide registers. In that case, the 32-bit value occupies the preferred slot; the other slots
return zeros.

mfspr rt,sa

0 0 0 0 0 0 0 1 1 0 0 /// SA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

if defined(SPR(SA)) then RT ← SPR(SA)
else RT ← 0

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Control Instructions

Page 245 of 278

Move to Special-Purpose Register Required v 1.0

The contents of register RT is written to Special-Purpose Register SA. If SPR SA is not defined, no operation
is performed.

Note: The SPU ISA defines the mtspr and mfspr instructions as 128-bit operations. An implementation
might define 32-bit wide registers. In that case, the 32-bit value of the preferred slot is used; values in the
other slots are ignored.

mtspr sa, rt

0 0 1 0 0 0 0 1 1 0 0 /// SA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

if defined(SPR(SA)) then
SPR(SA) ← RT

else
do nothing

Instruction Set Architecture

Synergistic Processor Unit

Control Instructions

Page 246 of 278
Version 1.2

January 27, 2007

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Channel Instructions

Page 247 of 278

11. Channel Instructions

The SPU provides an input/output interface based on message passing called the channel interface. This
section describes the instructions used to communicate between the SPU and external devices through the
channel interface.

Channels are 128-bit wide communication paths between the SPU and external devices. Each channel oper-
ates in one direction only, and is called either a read channel or a write channel, according to the operation
that the SPU can perform on the channel. Instructions are provided that allow the SPU program to read from
or write to a channel; the operations performed must match the type of channel addressed.

An implementation can implement any number of channels up to 128. Each channel has a channel number in
the range 0-127. Channel numbers have no particular significance, and there is no relationship between the
direction of a channel and its number.

The channels and the external devices have capacity. Channel capacity is the minimum number of reads or
writes that can be performed without delay. Attempts to access a channel without capacity cause instruction
processing to cease until capacity becomes available and the access can complete. The SPU maintains
counters to measure channel capacity and provides an instruction to read channel capacity.

As long as capacity is available, the channels and external devices can service a burst of SPU accesses
without requiring the SPU to delay execution. An attempt to write to a channel beyond its capacity causes the
SPU to hang until the external device empties the channel. An attempt to read from a channel when it is
empty also causes the SPU to hang until the device inserts data into the channel.

Instruction Set Architecture

Synergistic Processor Unit

Channel Instructions

Page 248 of 278
Version 1.2

January 27, 2007

Read Channel Required v 1.0

The SPU waits for data to become available in channel CA (capacity is available). When data is available to
the channel, it is moved from the channel and placed into register RT.

If the channel designated by the CA field is not a valid, readable channel, the SPU will stop on or after the
rdch instruction.

Note: The SPU ISA defines the rdch and wrch instructions as 128-bit operations. An implementation might
define 32-bit wide channels. In that case, the 32-bit value occupies the preferred slot; the other slots return
zeros.

rdch rt,ca

0 0 0 0 0 0 0 1 1 0 1 /// CA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

if readable(Channel(CA)) then
RT ← Channel(CA)

else
Stop after executing zero or more instructions after the rdch.

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Channel Instructions

Page 249 of 278

Read Channel Count Required v 1.0

The channel capacity of channel CA is placed into the preferred slot of register RT. The channel capacity of
unimplemented channels is zero.

rchcnt rt,ca

0 0 0 0 0 0 0 1 1 1 1 /// CA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RT0:3 ← Channel Capacity(CA)
RT4:15 ← 0

Instruction Set Architecture

Synergistic Processor Unit

Channel Instructions

Page 250 of 278
Version 1.2

January 27, 2007

Write Channel Required v 1.0

The SPU waits for capacity to become available in channel CA before executing the wrch instruction. When
capacity is available in the channel, the contents of register RT are placed into channel CA. Channel writes
targeting channels that are not valid writable channels cause the SPU to stop on or after the wrch instruction.

Note: The SPU ISA defines the rdch and wrch instructions as 128-bit operations. An implementation might
define 32-bit wide channels. In that case, the 32-bit value of the preferred slot is used; values of the other
slots are ignored.

wrch ca,rt

0 0 1 0 0 0 0 1 1 0 1 /// CA RT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

if writable (Channel(CA)) then
Channel(CA) ← RT

else
Stop after executing zero or more instructions after the wrch.

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

SPU Interrupt Facility

Page 251 of 278

12. SPU Interrupt Facility

This section describes the SPU interrupt facility.

External conditions are monitored and managed through external facilities that are controlled through the
channel interface. External conditions can affect SPU instruction sequencing through the following facilities:

• The bisled instruction

The bisled instruction tests for the existence of an external condition and branches to a target if it is
present. The bisled instruction allows the SPU software to poll for external conditions and to call a han-
dler subroutine, if one is present. When polling is not required, the SPU can be enabled to interrupt nor-
mal instruction processing and to vector to a handler subroutine when an external condition appears.

• The interrupt facility

The following indirect branch instructions allow software to enable and disable the interrupt facility during
critical subroutines:

• bi
• bisl
• bisled
• biz
• binz
• bihz
• bihnz

All of these branch instructions provide the [D] and [E] feature bits. When one of these branches is taken, the
interrupt-enable status changes before the target instruction is executed. Table 12-1 describes the feature bit
settings and their results.

12.1 SPU Interrupt Handler

The SPU supports a single interrupt handler. The entry point for this handler is address 0 in local storage.
When a condition is present and interrupts are enabled, the SPU branches to address 0 and disables the
interrupt facility. The address of the next instruction to be executed is saved in the SRR0 register. The iret
instruction can be used to return from the handler. iret branches indirectly to the address held in the SRR0
register. iret, like the other indirect branches, has an [E] feature bit that can be used to re-enable interrupts.

Table 12-1. Feature Bits [D] and [E] Settings and Results

Feature Bit Setting
Result

[D] [E]

0 0 Status does not change.

0 1 Interrupt processing is enabled.

1 0 Interrupt processing is disabled.

1 1 Causes undefined behavior.

Instruction Set Architecture

Synergistic Processor Unit

SPU Interrupt Facility

Page 252 of 278
Version 1.2

January 27, 2007

12.2 SPU Interrupt Facility Channels

The interrupt facility uses several channels for configuration, state observation, and state restoration. The
current value of SRR0 can be read from the SPU_RdSRR0 channel, and the SPU_WrSRR0 channel
provides write access to SRR0. When SRR0 is written by wrch 14, synchronization is required to ensure that
this new value is available to the iret instruction. This synchronization is provided by executing the sync
instruction with the [C], or Channel Sync, feature bit set. Without this synchronization, iret instructions
executed after wrch 14 instructions branch to unpredictable addresses. The SPU_RdSRR0 and
SPU_WrSRR0 support nested interrupts by allowing software to save and restore SRR0 to a save area in
local storage.

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Synchronization and Ordering

Page 253 of 278

13. Synchronization and Ordering

The SPU provides a sequentially ordered programming model so that, with a few exceptions, all previous
instructions appear to be finished before the next instruction is started.

Systems including an SPU often feature external devices with direct local storage access. Figure 13-1 shows
a common organization where the external devices also communicate with the SPU via the channel interface.
These systems are shared memory multiprocessors with message passing.

Table 13-1 defines five transactions serviced by local storage. The SPU ISA does not define the behavior of
the external device or how the external device accesses local storage. When this document refers to an
external write of local storage, it assumes the external device delivers data to local storage such that a subse-
quent SPU load from local storage can retrieve the data.

Interaction between local storage accesses of the external devices and those of the SPU can expose effects
of SPU implementation-specific reordering, speculation, buffering, and caching. This section discusses how
to order sequences of these transactions to obtain consistent results.

Figure 13-1. Systems with Multiple Accesses to Local Storage

Table 13-1. Local Storage Accesses

Name Description

Load SPU load instruction gets data from local storage read.

Store SPU store instruction sends data to local storage write.

Fetch SPU instruction fetch gets data from local storage read.

ExtWrite External device sends data to local storage write.

ExtRead External device gets data from local storage read.

External
SPU

Instruction
Load Store ExtRead ExtWrite

Local Storage

Channel
Interface

Fetch

Device

Instruction Set Architecture

Synergistic Processor Unit

Synchronization and Ordering

Page 254 of 278
Version 1.2

January 27, 2007

13.1 Speculation, Reordering, and Caching SPU Local Storage Access

SPU local storage access is weakly consistent (see PowerPC Virtual Environment Architecture, Book II).
Therefore, the sequential execution model, as applied to instructions that cause storage accesses, guaran-
tees only that those accesses appear to be performed in program order with respect to the SPU executing the
instructions. These accesses might not appear to be performed in program order with respect to external
local storage accesses or with respect to the SPU instruction fetch. This means that, in the absence of
external local storage writes, an SPU load from any particular address returns the data written by the most
recent SPU store to that address. However, an instruction fetch from that address does not necessarily return
that data.

The SPU is allowed to cache, buffer, and otherwise reorder its local storage accesses. SPU loads, stores,
and instruction fetches might or might not access the local storage. The SPU can speculatively read the local
storage. That is, the SPU can read the local storage on behalf of instructions that are not required by the
program. The SPU does not speculatively write local storage. If and when the SPU stores access local
storage, the SPU only writes local storage on behalf of stores required by the program. Instruction fetches,
loads, and stores can access local storage in any order.

13.2 SPU Internal Execution State

The channel interface can be used to modify the SPU internal execution state. An internal execution state is
any state within an SPU, but outside local storage, that is modified through the channel interface and that can
affect the sequence or execution of instructions. For example, programs can change SRR0 by writing the
SPU_WrSRR0 channel, and SRR0 is the internal execution state. State changes made through the channel
interface might not be synchronized with SPU program execution.

13.3 Synchronization Primitives

The SPU provides three synchronization instructions: dsync, sync, and sync.c. These instructions have
both consistency and instruction serializing effects, as shown in Table 13-2 Synchronization Instructions on
page 255. Programs can use the consistency effects of these primitives to ensure that the local storage state
is consistent with SPU loads and stores. The instruction serializing effects allow the SPU program to order its
local storage access.

The dsync instruction orders loads, stores, and channel accesses but not instruction fetches. When a dsync
completes, the SPU will have completed all prior loads, stores, and channel accesses and will not have
begun execution of any subsequent loads, stores, or channel accesses. At this time, an external read from a
local storage address returns the data stored by the most recent SPU store to that address. SPU loads after
the dsync return the data externally written before the moment when the dsync completes. The dsync
instruction affects only SPU instruction sequencing and the consistency of loads and stores with respect to
actual local storage state. The SPU does not broadcast dsync notification to external devices that access
local storage, and, therefore, does not affect the state of the external devices.

The sync instruction is much like dsync, but it also orders instruction fetches. Instruction fetches from a local
storage address after a sync instruction return data stored by the most recent store instruction or external
write to that address. The sync.c instruction builds upon the sync instruction. It ensures that the effects upon
the internal state caused by prior wrch instructions are propagated and influence the execution of the
following instructions. SPU execution begins with a start event and ends with a stop event. Both start and
stop perform sync.c.

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Synchronization and Ordering

Page 255 of 278

Table 13-3 indicates which synchronization primitives are required between actions that modify local storage
and other reads and writes of local storage. SPU programs do not require synchronization primitives between
their own load and store instructions in order for load instructions to get the data stored by the last preceding
store instruction.

However, a program that stores into the instruction stream must execute a sync instruction before it reaches
the newly stored instructions. The sync instruction forces the instruction fetch to read the instructions after
the last store before the sync instruction. Without the sync instruction, the SPU might or might not execute
the newly stored instruction. The SPU might execute the instruction in local storage at the time of the last
sync event.

When an external access of local storage occurs, and it is clear that the external access is before or after a
particular SPU access of local storage, synchronization is required to force the data to move between the
SPU and the external device. Without synchronization, the external device might see a local storage state
that is inconsistent with any point of execution in the SPU program.

For example, if an SPU program is to send data through local storage to an external reader, it must store the
data and then execute a dsync instruction. If the external read occurs after the dsync instruction, it will read
the stored data. If an SPU program is to load data put into local storage by an external writer, it must first
execute a dsync instruction before it executes the load instruction. If the dsync instruction executes after the
external write, the subsequent load instructions will be able to read the data stored by the external writer.

Table 13-2. Synchronization Instructions

Instruction Consistency Effects Instruction Serialization Effects

dsync

Ensures that subsequent external reads access data written
by prior stores.
Ensures that subsequent loads access data written by
external writes.

Forces load and store access of local storage because of
instructions before the dsync to be completed before com-
pletion of dsync.
Forces read channel operations because of instructions
before the dsync to be completed before completion of the
dsync.
Forces load and store access of local storage because of
instructions after the dsync to occur after completion of the
dsync.
Forces read and write channel operations because of
instructions after the dsync to occur after completion of the
dsync.

sync

Ensures that subsequent external reads access data written
by prior stores.
Ensures that subsequent instruction fetches access data
written by prior stores and external writes.
Ensures that subsequent loads access data written by
external writes.

Forces all access of local storage and channels because of
instructions before the sync to be completed before com-
pletion of sync.
Forces all access of local storage and channels because of
instructions after the sync to occur after completion of the
sync.

sync.c

Ensures that subsequent external reads access data written
by prior stores.
Ensures that subsequent instruction fetches access data
written by prior stores and external writes.
Ensures that subsequent loads access data written by
external writes.
Ensures that subsequent instruction processing is influ-
enced by all internal execution states modified by previous
wrch instructions.

Forces all access of local storage and channels because of
instructions before the sync.c to be completed before com-
pletion of sync.c.
Forces all access of local storage and channels because of
instructions after the sync.c to occur after completion of the
sync.c.

Instruction Set Architecture

Synergistic Processor Unit

Synchronization and Ordering

Page 256 of 278
Version 1.2

January 27, 2007

13.4 Caching SPU Local Storage Access

Implementations of the SPU can feature caches of local storage data for either instructions, data, or both.
These caches must reflect data to and from the local storage when synchronization requires the state of local
storage to be consistent. The dsync instruction ensures that modified data is visible to external devices that
access local storage, and that data modified by these external devices is visible to subsequent loads and
stores. The sync instructions also ensure that data modified by either stores or external puts is visible to a
subsequent instruction fetch. For example, an instruction cache that does not snoop must be invalidated
when sync is executed, and a copy-back data cache that does not snoop must be flushed and invalidated
when either sync or dsync is executed.

13.5 Self-Modifying Code

SPU programs can store instructions in local storage and execute them. If the SPU has already read the
instructions from local storage, before the store, the new instructions are not seen by SPU execution. Self-
modifying code should always execute a sync instruction before executing the stored code. The sync
instruction ensures that all stores complete before the next instruction is fetched from local storage.

13.6 External Local Storage Access

Loads and stores do not necessarily access local storage in program order. Accesses from external devices
can be interleaved in ways that are inconsistent with program order. The dsync instruction forces all
preceding loads and stores to complete their local storage access before allowing any further loads or stores
to be initiated, while sync ensures that the next instruction is fetched after the sync instruction is executed.
An external device can synchronize with an SPU program through local storage access.

Table 13-4 shows how an SPU program can reliably send to an external device, synchronizing only through
the local storage. In this example, an SPU sends data through a buffer at address C to an external reader
using a marker in local storage at address D. The SPU begins by storing the data to be transferred. It then
executes a dsync instruction to force the data into local storage before it stores the marker. The dsync
instruction also prevents the marker store from being reordered amongst the data stores. After the marker
store, the SPU program must execute a dsync instruction again to force the marker into local storage.

Table 13-5 shows how data can move from an external writer to the SPU program using local-storage-based
synchronization. The SPU program starts by polling for the marker that indicates that data is ready. The
polling loop begins with a dsync instruction that forces subsequent load instructions to get data from the now
current local storage state. When the marker is found, the SPU program must execute a dsync instruction

Table 13-3. Synchronizing Multiple Accesses to Local Storage

Writer
Local Storage Access to be Synchronized with the Local Storage Write

Store Load Fetch ExtRead ExtWrite

Store nothing nothing sync dsync dsync

ExtWrite dsync dsync sync N/A N/A

Note: The SPU ISA does not define how external readers and writers should order their accesses to local storage. Table 13-3 shows
entries that relate to external readers and writers as “N/A.”

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Synchronization and Ordering

Page 257 of 278

again to prevent the data loads from being performed before the marker load. If such reordering were to
occur, it would be possible for the marker write to occur between the reordered data loads and the delayed
marker load. In this case, the data loads would receive stale data.

13.7 Speculation and Reordering of Channel Reads and Channel Writes

The SPU does not reorder or speculatively execute channel reads or channel writes. All operations at the
channel interface represent instructions in the order they occur in the program.

Table 13-4. Sending Data and Synchronizing through Local Storage

External
Device SPU Comment

Store data to C

dsync

Force a subsequent store to follow the store
to C; that is, there will be no view of local
storage where the marker is present in D
but the data is not yet in C.

Store marker to D

dsync Force the store to D to be visible in local
storage to external readers.

eloop: Read D

If not marker, goto eloop

Read C

Table 13-5. Receiving Data and Synchronizing through Local Storage

External
Device SPU Comment

Write data to A
This is the order in which the external
device modifies local storage. The ordering
is not controlled by the SPU ISA.

Write marker to B

loop: dsync
Force a subsequent load to access local
storage, so that the load arriving from B will
get new data from local storage.

Load from B

If not marker, goto loop Ensure A and B are both written to local
storage.

dsync

Force a subsequent load to execute after
the load from B. Without this dsync, the
load from A could be performed before the
load from B and get local storage contents
before the write to A.

Load from A Must get data from the write to A.

Instruction Set Architecture

Synergistic Processor Unit

Synchronization and Ordering

Page 258 of 278
Version 1.2

January 27, 2007

13.8 Channel Interface with External Device

The channel interface delivers channel reads and writes to the SPU interface in program order, but there are
no ordering guarantees with respect to load and stores. It is possible that a message sent to an external
device may trigger the external device to directly access local storage. SPU programs might want to use
either sync or dsync instructions, or both, to order SPU loads and stores relative to the external accesses.
Table 13-6 shows how an SPU program might reliably send and receive data from an external device
synchronizing through the channel interface.

Note: The SPU architecture does not specify what actions an external device can perform in response to a
channel read or write. The SPU does not wait for those actions to complete, and it does not synchronize the
state of local storage before or after the channel operation.

13.9 Execution State Set by an SPU Program through the Channel Interface

Some SPU channels can control aspects of SPU execution state; for example, SRR0. State changes made
through channel writes might not affect subsequent instructions. Execution of the sync.c instruction ensures
that the new state does affect the next instruction.

13.10 Execution State Set by an External Device

Execution state changes made by an external device are ordered with respect to other externally requested
state changes but not with respect to SPU instruction execution. The external device can stop the SPU, make
execution state changes, start the SPU, and be certain the new state is visible to program execution.

Table 13-6. Synchronizing through the Channel Interface

External
Device SPU Comment

SPU receives data through local storage address A

Write data to A

Send message to channel B The ordering is not controlled by the SPU
ISA.

rdch B Wait for message

dsync Ensure load from A is executed after rdch,
and access the data in local storage

load from A Must get data

SPU sends data through local storage address C

Store data to C

dsync Ensure data is in local storage

wrch D Send message

Receive message from channel D

Read data from C The ordering is not controlled by the SPU
ISA.

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Instruction Table Sorted by Instruction Mnemonic

Page 259 of 278

Appendix A. Instruction Table Sorted by Instruction Mnemonic

Table A-1. Instructions Sorted by Mnemonic (Page 1 of 6)

Mnemonic Instruction Page

a Add Word 60

absdb Absolute Differences of Bytes 92

addx Add Extended 66

ah Add Halfword 58

ahi Add Halfword Immediate 59

ai Add Word Immediate 61

and And 97

andbi And Byte Immediate 99

andc And with Complement 98

andhi And Halfword Immediate 100

andi And Word Immediate 101

avgb Average Bytes 91

bg Borrow Generate 70

bgx Borrow Generate Extended 71

bi Branch Indirect 178

bihnz Branch Indirect If Not Zero Halfword 189

bihz Branch Indirect If Zero Halfword 188

binz Branch Indirect If Not Zero 187

bisl Branch Indirect and Set Link 181

bisled Branch Indirect and Set Link if External Data 180

biz Branch Indirect If Zero 186

br Branch Relative 174

bra Branch Absolute 175

brasl Branch Absolute and Set Link 177

brhnz Branch If Not Zero Halfword 184

brhz Branch If Zero Halfword 185

brnz Branch If Not Zero Word 182

brsl Branch Relative and Set Link 176

brz Branch If Zero Word 183

cbd Generate Controls for Byte Insertion (d-form) 40

cbx Generate Controls for Byte Insertion (x-form) 41

cdd Generate Controls for Doubleword Insertion (d-form) 46

cdx Generate Controls for Doubleword Insertion (x-form) 47

ceq Compare Equal Word 160

ceqb Compare Equal Byte 156

Instruction Set Architecture

Synergistic Processor Unit

Instruction Table Sorted by Instruction Mnemonic

Page 260 of 278
Version 1.2

January 27, 2007

ceqbi Compare Equal Byte Immediate 157

ceqh Compare Equal Halfword 158

ceqhi Compare Equal Halfword Immediate 159

ceqi Compare Equal Word Immediate 161

cflts Convert Floating to Signed Integer 221

cfltu Convert Floating to Unsigned Integer 223

cg Carry Generate 67

cgt Compare Greater Than Word 166

cgtb Compare Greater Than Byte 162

cgtbi Compare Greater Than Byte Immediate 163

cgth Compare Greater Than Halfword 164

cgthi Compare Greater Than Halfword Immediate 165

cgti Compare Greater Than Word Immediate 167

cgx Carry Generate Extended 68

chd Generate Controls for Halfword Insertion (d-form) 42

chx Generate Controls for Halfword Insertion (x-form) 43

clgt Compare Logical Greater Than Word 172

clgtb Compare Logical Greater Than Byte 168

clgtbi Compare Logical Greater Than Byte Immediate 169

clgth Compare Logical Greater Than Halfword 170

clgthi Compare Logical Greater Than Halfword Immediate 171

clgti Compare Logical Greater Than Word Immediate 173

clz Count Leading Zeros 83

cntb Count Ones in Bytes 84

csflt Convert Signed Integer to Floating 220

cuflt Convert Unsigned Integer to Floating 222

cwd Generate Controls for Word Insertion (d-form) 44

cwx Generate Controls for Word Insertion (x-form) 45

dfa Double Floating Add 203

dfceq Double Floating Compare Equal 226

dfcgt Double Floating Compare Greater Than 228

dfcmeq Double Floating Compare Magnitude Equal 227

dfcmgt Double Floating Compare Magnitude Greater Than 229

dfm Double Floating Multiply 207

dfma Double Floating Multiply and Add 209

dfms Double Floating Multiply and Subtract 213

dfnma Double Floating Negative Multiply and Add 214

Table A-1. Instructions Sorted by Mnemonic (Page 2 of 6)

Mnemonic Instruction Page

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Instruction Table Sorted by Instruction Mnemonic

Page 261 of 278

dfnms Double Floating Multiply and Subtract 213

dfs Double Floating Subtract 205

dftsv Double Floating Test Special Value 230

dsync Synchronize Data 243

eqv Equivalent 114

fa Floating Add 202

fceq Floating Compare Equal 231

fcgt Floating Compare Greater Than 233

fcmeq Floating Compare Magnitude Equal 232

fcmgt Floating Compare Magnitude Greater Than 234

fesd Floating Extend Single to Double 225

fi Floating Interpolate 219

fm Floating Multiply 206

fma Floating Multiply and Add 208

fms Floating Multiply and Subtract 212

fnms Floating Negative Multiply and Subtract 210

frds Floating Round Double to Single 224

frest Floating Reciprocal Estimate 215

frsqest Floating Reciprocal Absolute Square Root Estimate 217

fs Floating Subtract 204

fscrrd Floating-Point Status and Control Register Write 235

fscrwr Floating-Point Status and Control Register Read 236

fsm Form Select Mask for Words 87

fsmb Form Select Mask for Bytes 85

fsmbi Form Select Mask for Bytes Immediate 55

fsmh Form Select Mask for Halfwords 86

gb Gather Bits from Words 90

gbb Gather Bits from Bytes 88

gbh Gather Bits from Halfwords 89

hbr Hint for Branch (r-form) 192

hbra Hint for Branch (a-form) 193

hbrr Hint for Branch Relative 194

heq Halt If Equal 150

heqi Halt If Equal Immediate 151

hgt Halt If Greater Than 152

hgti Halt If Greater Than Immediate 153

hlgt Halt If Logically Greater Than 154

Table A-1. Instructions Sorted by Mnemonic (Page 3 of 6)

Mnemonic Instruction Page

Instruction Set Architecture

Synergistic Processor Unit

Instruction Table Sorted by Instruction Mnemonic

Page 262 of 278
Version 1.2

January 27, 2007

hlgti Halt If Logically Greater Than Immediate 155

il Immediate Load Word 52

ila Immediate Load Address 53

ilh Immediate Load Halfword 50

ilhu Immediate Load Halfword Upper 51

iohl Immediate Or Halfword Lower 54

iret Interrupt Return 179

lnop No Operation (Load) 240

lqa Load Quadword (a-form) 34

lqd Load Quadword (d-form) 32

lqr Load Quadword Instruction Relative (a-form) 35

lqx Load Quadword (x-form) 33

mfspr Move from Special-Purpose Register 244

mpy Multiply 72

mpya Multiply and Add 76

mpyh Multiply High 77

mpyhh Multiply High High 79

mpyhha Multiply High High and Add 80

mpyhhau Multiply High High Unsigned and Add 82

mpyhhu Multiply High High Unsigned 81

mpyi Multiply Immediate 74

mpys Multiply and Shift Right 78

mpyu Multiply Unsigned 73

mpyui Multiply Unsigned Immediate 75

mtspr Move to Special-Purpose Register 245

nand Nand 112

nop No Operation (Execute) 241

nor Nor 113

or Or 102

orbi Or Byte Immediate 104

orc Or with Complement 103

orhi Or Halfword Immediate 105

ori Or Word Immediate 106

orx Or Across 107

rchcnt Read Channel Count 249

rdch Read Channel 248

rot Rotate Word 129

Table A-1. Instructions Sorted by Mnemonic (Page 4 of 6)

Mnemonic Instruction Page

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Instruction Table Sorted by Instruction Mnemonic

Page 263 of 278

roth Rotate Halfword 127

rothi Rotate Halfword Immediate 128

rothm Rotate and Mask Halfword 136

rothmi Rotate and Mask Halfword Immediate 137

roti Rotate Word Immediate 130

rotm Rotate and Mask Word 138

rotma Rotate and Mask Algebraic Word 147

rotmah Rotate and Mask Algebraic Halfword 145

rotmahi Rotate and Mask Algebraic Halfword Immediate 146

rotmai Rotate and Mask Algebraic Word Immediate 148

rotmi Rotate and Mask Word Immediate 139

rotqbi Rotate Quadword by Bits 134

rotqbii Rotate Quadword by Bits Immediate 135

rotqby Rotate Quadword by Bytes 131

rotqbybi Rotate Quadword by Bytes from Bit Shift Count 133

rotqbyi Rotate Quadword by Bytes Immediate 132

rotqmbi Rotate and Mask Quadword by Bits 143

rotqmbii Rotate and Mask Quadword by Bits Immediate 144

rotqmby Rotate and Mask Quadword by Bytes 140

rotqmbybi Rotate and Mask Quadword Bytes from Bit Shift Count 142

rotqmbyi Rotate and Mask Quadword by Bytes Immediate 141

selb Select Bits 115

sf Subtract from Word 64

sfh Subtract from Halfword 62

sfhi Subtract from Halfword Immediate 63

sfi Subtract from Word Immediate 65

sfx Subtract from Extended 69

shl Shift Left Word 120

shlh Shift Left Halfword 118

shlhi Shift Left Halfword Immediate 119

shli Shift Left Word Immediate 121

shlqbi Shift Left Quadword by Bits 122

shlqbii Shift Left Quadword by Bits Immediate 123

shlqby Shift Left Quadword by Bytes 124

shlqbybi Shift Left Quadword by Bytes from Bit Shift Count 126

shlqbyi Shift Left Quadword by Bytes Immediate 125

shufb Shuffle Bytes 116

Table A-1. Instructions Sorted by Mnemonic (Page 5 of 6)

Mnemonic Instruction Page

Instruction Set Architecture

Synergistic Processor Unit

Instruction Table Sorted by Instruction Mnemonic

Page 264 of 278
Version 1.2

January 27, 2007

stop Stop and Signal 238

stopd Stop and Signal with Dependencies 239

stqa Store Quadword (a-form) 38

stqd Store Quadword (d-form) 36

stqr Store Quadword Instruction Relative (a-form) 39

stqx Store Quadword (x-form) 37

sumb Sum Bytes into Halfwords 93

sync Synchronize 242

wrch Write Channel 250

xor Exclusive Or 108

xorbi Exclusive Or Byte Immediate 109

xorhi Exclusive Or Halfword Immediate 110

xori Exclusive Or Word Immediate 111

xsbh Extend Sign Byte to Halfword 94

xshw Extend Sign Halfword to Word 95

xswd Extend Sign Word to Doubleword 96

Table A-1. Instructions Sorted by Mnemonic (Page 6 of 6)

Mnemonic Instruction Page

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Details of the Generate Controls Instructions

Page 265 of 278

Appendix B. Details of the Generate Controls Instructions

The tables in this section show the details of the masks that are generated by the eight generate controls
instructions. The masks that are shown are intended for use as the RC operand of the shuffle bytes, shufb,
instruction. Each row in a table shows the rightmost 4 bits of the effective address. An x in the first column
indicates an ignored bit. Blanks within the “created mask” are shown only to improve clarity.

See the following tables, as applicable:

• For byte insertion, see Table B-1 Byte Insertion: Rightmost 4 Bits of the Effective Address and Created
Mask on page 265.

• For halfword insertion, see Table B-2 Halfword Insertion: Rightmost 4 Bits of the Effective Address and
Created Mask on page 266.

• For word insertion, see Table B-3 Word Insertion: Rightmost 4 Bits of the Effective Address and Created
Mask on page 266.

• For doubleword insertion, see Table B-4 Doubleword Insertion: Rightmost 4 Bits of Effective Address and
Created Mask on page 266.

Table B-1. Byte Insertion: Rightmost 4 Bits of the Effective Address and Created Mask

Rightmost 4 Bits of the Effective
Address Created Mask

0000 03 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0001 10 03 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0010 10 11 03 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0011 10 11 12 03 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0100 10 11 12 13 03 15 16 17 18 19 1a 1b 1c 1d 1e 1f

0101 10 11 12 13 14 03 16 17 18 19 1a 1b 1c 1d 1e 1f

0110 10 11 12 13 14 15 03 17 18 19 1a 1b 1c 1d 1e 1f

0111 10 11 12 13 14 15 16 03 18 19 1a 1b 1c 1d 1e 1f

1000 10 11 12 13 14 15 16 17 03 19 1a 1b 1c 1d 1e 1f

1001 10 11 12 13 14 15 16 17 18 03 1a 1b 1c 1d 1e 1f

1010 10 11 12 13 14 15 16 17 18 19 03 1b 1c 1d 1e 1f

1011 10 11 12 13 14 15 16 17 18 19 1a 03 1c 1d 1e 1f

1100 10 11 12 13 14 15 16 17 18 19 1a 1b 03 1d 1e 1f

1101 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 03 1e 1f

1110 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 03 1f

1111 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 03

Instruction Set Architecture

Synergistic Processor Unit

Details of the Generate Controls Instructions

Page 266 of 278
Version 1.2

January 27, 2007

Table B-2. Halfword Insertion: Rightmost 4 Bits of the Effective Address and Created Mask

Rightmost 4 Bits of the Effective
Address Created Mask

000x 0203 1213 1415 1617 1819 1a1b 1c1d 1e1f

001x 1011 0203 1415 1617 1819 1a1b 1c1d 1e1f

010x 1011 1213 0203 1617 1819 1a1b 1c1d 1e1f

011x 1011 1213 1415 0203 1819 1a1b 1c1d 1e1f

100x 1011 1213 1415 1617 0203 1a1b 1c1d 1e1f

101x 1011 1213 1415 1617 1819 0203 1c1d 1e1f

110x 1011 1213 1415 1617 1819 1a1b 0203 1e1f

111x 1011 1213 1415 1617 1819 1a1b 1c1d 0203

Table B-3. Word Insertion: Rightmost 4 Bits of the Effective Address and Created Mask

Rightmost 4 Bits of the Effective
Address Created Mask

00xx 00010203 14151617 18191a1b 1c1d1e1f

01xx 10111213 00010203 18191a1b 1c1d1e1f

10xx 10111213 14151617 00010203 1c1d1e1f

11xx 10111213 14151617 18191a1b 00010203

Table B-4. Doubleword Insertion: Rightmost 4 Bits of Effective Address and Created Mask

Rightmost 4 Bits of the Effective
Address Created Mask

0xxx 0001020304050607 18191a1b1c1d1e1f

1xxx 1011121303151617 0001020304050607

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Glossary

Page 267 of 278

Glossary

architecture A detailed specification of requirements for a processor or computer system. It
does not specify details of how the processor or computer system must be imple-
mented; instead it provides a template for a family of compatible implementations.

big-endian A byte-ordering method in memory where the address n of a word corresponds to
the most significant byte. In an addressed memory word, the bytes are ordered (left
to right) 0, 1, 2, 3, with 0 being the most significant byte. See little-endian.

bisled branch indirect and set link if external data instruction

cache High-speed memory close to a processor. A cache usually contains recently-
accessed data or instructions, but certain cache-control instructions can lock, evict,
or otherwise modify the caching of data or instructions.

CBEA See Cell Broadband Engine Architecture.

Cell Broadband Engine
Architecture

Extends the PowerPC 64-bit architecture with loosely coupled cooperative off-load
processors. The Cell Broadband Engine Architecture provides a basis for the
development of microprocessors targeted at the game, multimedia, and real-time
market segments. The Cell Broadband Engine is one implementation of the Cell
Broadband Engine Architecture.

channel Channels are unidirectional, function-specific registers or queues. They are the
primary means of communication between an SPE’s SPU and its MFC, which in
turn mediates communication with the PPEs, other SPEs, and other devices.
These other devices use MMIO registers in the destination SPE to transfer informa-
tion on the channel interface of that destination SPE.

Specific channels have read or write properties, and blocking or nonblocking prop-
erties. Software on the SPU uses channel commands to enqueue DMA
commands, query DMA and processor status, perform MFC synchronization,
access auxiliary resources such as the decrementer (timer), and perform interpro-
cessor-communication via mailboxes and signal-notification.

DBZ Divide by zero.

DIFF IEEE noncompliant result.

DMA Direct memory access. A technique for using a special-purpose controller to
generate the source and destination addresses for a memory or I/O transfer.

double precision The specification that causes a floating-point value to be stored (internally) in the
long format (two computer words).

effective address An address generated or used by a program to reference memory. A memory-
management unit translates an effective address (EA) to a virtual address (VA),
which it then translates to a real address (RA) that accesses real (physical)
memory. The maximum size of the effective-address space is 264 bytes.

exception An error, unusual condition, or external signal that may alter a status bit and will
cause a corresponding interrupt, if the interrupt is enabled.

Instruction Set Architecture

Synergistic Processor Unit

Glossary

Page 268 of 278
Version 1.2

January 27, 2007

fetch Retrieving instructions from either the cache or system memory and placing them
into the instruction queue.

floating point A way of representing real numbers (that is, values with fractions or decimals) in 32
bits or 64 bits. Floating-point representation is useful to describe very small or very
large numbers.

FPU Floating-point unit.

fscrrd Floating-Point Status and Control Register read instruction.

fscrwr Floating-Point Status and Control Register write instruction.

general purpose register An explicitly addressable register that can be used for a variety of purposes (for
example, as an accumulator or an index register).

GPR See general purpose register.

guarded Prevented from responding to speculative loads and instruction fetches. The oper-
ating system typically implements guarding, for example, on all I/O devices.

implementation A particular processor that conforms to the architecture, but may differ from other
architecture-compliant implementations for example in design, feature set, and
implementation of optional features.

Inf Infinity.

instruction cache A cache for providing program instructions to the processor faster than they can be
obtained from system memory.

INV Invalid operation.

INX Inexact result.

iohl Immediate or halfword lower instruction.

iret interrupt return instruction

ISA Instruction set architecture.

KB Kilobyte.

least significant bit The bit of least value in an address, register, data element, or instruction encoding.

least significant byte The byte of least value in an address, register, data element, or instruction
encoding.

little-endian A byte-ordering method in memory where the address n of a word corresponds to
the least significant byte. In an addressed memory word, the bytes are ordered (left
to right) 3, 2, 1, 0, with 3 being the most significant byte. See big-endian.

local storage The storage associated with each SPE. It holds both instructions and data.

LSA Local Storage Address. An address in the LS of an SPU, by which programs
running in the SPU and DMA transfers managed by the MFC access the LS.

Instruction Set Architecture

 Synergistic Processor Unit

Version 1.2
January 27, 2007

Glossary

Page 269 of 278

LSb See least significant bit.

mask A pattern of bits used to accept or reject bit patterns in another set of data. Hard-
ware interrupts are enabled and disabled by setting or clearing a string of bits, with
each interrupt assigned a bit position in a mask register

MFC Memory flow controller. It is part of an SPE and provides two main functions:
moves data using DMA between the SPE’s local storage (LS) and main storage,
and synchronizes the SPU with the rest of the processing units in the system.

mfspr Move from special-purpose register instruction.

most significant bit The highest-order bit in an address, registers, data element, or instruction
encoding.

most significant byte The highest-order byte in an address, registers, data element, or instruction
encoding.

MSb See most significant bit.

MSB See most significant byte.

MSR Machine state register.

mtspr Move to special-purpose register instruction.

NaN Not a number

OVF Overflow

PC program counter.

PowerPC Of or relating to the PowerPC Architecture or the microprocessors that implement
this architecture.

PowerPC
Architecture

A computer architecture that is based on the third generation of reduced instruction
set computer (RISC) processors. The PowerPC architecture was developed jointly
by Apple, Motorola, and IBM.

PPE PowerPC Processor Element. A general-purpose processor in the Cell Broadband
Engine.

QNaN Quiet NaN.

rchcnt Read channel counter instruction.

rdch Read from channel instruction.

RN0 Rounding control for slice 0 of the 2-way SIMD double-precision operations.

RN1 Rounding control for slice 1 of the 2-way SIMD double-precision operations.

RO relative offset

ROH relative offset high

Instruction Set Architecture

Synergistic Processor Unit

Glossary

Page 270 of 278
Version 1.2

January 27, 2007

ROL relative offset low

RTL register transfer language

shufb shuffle bytes instruction

signal Information sent on a signal-notification channel. These channels are inbound (to
an SPE) registers. They can be used by a PPE or other processor to send informa-
tion to an SPE. Each SPE has two 32-bit signal-notification registers, each of which
has a corresponding memory-mapped I/O (MMIO) register into which the signal-
notification data is written by the sending processor. Unlike mailboxes, they can be
configured for either one-to-one or many-to-one signalling.

SIMD Single instruction, multiple data. Processing in which a single instruction operates
on multiple data elements that make up a vector data-type. Also known as vector
processing. This style of programming implements data-level parallelism.

SNaN Signalling NaN.

snoop To compare an address on a bus with a tag in a cache, to detect operations that
violate memory coherency.

SPR Special-purpose register.

SPU Synergistic Processor Unit. The part of an SPE that executes instructions from its
local storage (LS).

SRAM static random access memory

sync Synchronize command.

synchronization The process of arranging storage operations to complete in the order of occur-
rence.

UNF Underflow

vector An instruction operand containing a set of data elements packed into a one-dimen-
sional array. The elements can be fixed-point or floating-point values. Most
Vector/SIMD Multimedia Extension and SPU SIMD instructions operate on vector
operands. Vectors are also called SIMD operands or packed operands.

word Four bytes.

wrch Write to channel instruction.

Instruction Set Architecture

 Synergistic Processor Unit

Version.1.2
January 27, 2007

Index

Page 271 of 278

Index

Symbols

&, defined, 20
*, defined, 20
+, defined, 20
-, defined, 20
/, //, ///, defined, 19, 20
=, defined, 20
|*|, defined, 20
|, defined, 20
←, defined, 20
≥, defined, 20
≠, defined, 20
⊕, defined, 20
¬, defined, 20

Numerics

10-bit immediate, 19
16-bit immediate, 19
32-bit channels, 248, 250
32-bit registers, 244, 245
7-bit immediate, 19
8-bit immediate, 19

A

a, 60
absdb, 92
absolute differences of bytes, 92
add extended, 66
add halfword, 58
add halfword immediate, 59
add word, 60
add word immediate, 61
addition, two’s complement, 20
additional resources, 13
addx, 66
ah, 58
ahi, 59
ai, 61
algebraic right shift, 136, 137, 138, 139
and, 97
and (mnemonic), 97
and byte immediate, 99
and halfword immediate, 100
and with complement, 98
and word immediate, 101
AND, defined, 20
andbi, 99
andc, 98

andhi, 100
andi, 101
architectural overview, 25
assignment symbol, 20
audience, for manual, 13
average bytes, 91
avgb, 91

B

bg, 70
bgx, 71
bi, 178
bi instruction, 251
bihnz, 189
bihnz instruction, 251
bihz, 188
bihz instruction, 251
binary values in register RC and byte results, 116
binz, 187
binz instruction, 251
bisl, 181
bisl instruction, 251
bisled, 180
bisled instruction, 251
bit and byte numbering, 26–27
bit encoding, conventions for, 16
bit ordering, conventions for, 16
bit ranges, conventions for, 17
biz, 186
biz instruction, 251
borrow generate, 70
borrow generate extended, 71
br, 174
bra, 175
branch absolute, 175
branch absolute and set link, 177
branch if not zero halfword, 184
branch if not zero word, 182
branch if zero halfword, 185
branch if zero word, 183
branch indirect, 178
branch indirect and set link, 181
branch indirect and set link if external data, 180
branch indirect if not zero, 187
branch indirect if not zero halfword, 189
branch indirect if zero, 186
branch indirect if zero halfword, 188
branch instructions, 149–189
branch relative, 174
branch relative and set link, 176
brasl, 177
brhnz, 184
brhz, 185
brinst variable, 191

Instruction Set Architecture

Synergistic Processor Unit

Index

Page 272 of 278
Version.1.2

January 27, 2007

brnz, 182
brsl, 176
brtarg variable, 191
brz, 183
byte insertion, 265
byte ordering, conventions for, 16

C

caching, SPU local storage access, 254, 256
carry generate, 67
carry generate extended, 68
cbd, 40
cbx, 41
cdd, 46
cdx, 47
ceq, 160
ceqb, 156
ceqbi, 157
ceqh, 158
ceqhi, 159
ceqi, 161
cflts, 221
cfltu, 223
cg, 67
cgt, 166
cgtb, 162
cgtbi, 163
cgth, 164
cgthi, 165
cgti, 167
cgx, 68
channel instructions, 247–250
channel interface, 258
channel reads and writes, 257
channels, conventions for, 17
chd, 42
chx, 43
clgt, 172
clgtb, 168
clgtbi, 169
clgth, 170
clgthi, 171
clgti, 173
clz, 83
cntb, 84
compare equal byte, 156
compare equal byte immediate, 157
compare equal halfword, 158
compare equal halfword immediate, 159
compare equal word, 160
compare equal word immediate, 161
compare greater than byte, 162
compare greater than byte immediate, 163
compare greater than halfword, 164

compare greater than halfword immediate, 165
compare greater than word, 166
compare greater than word immediate, 167
compare instructions, 149–189
compare instructions for floating point. See floating-point

instructions
compare logical greater than byte, 168
compare logical greater than byte immediate, 169
compare logical greater than halfword, 170
compare logical greater than halfword immediate, 171
compare logical greater than word, 172
compare logical greater than word immediate, 173
compute-mask instructions. See generate controls instruc-

tions
conditional branch instructions, described, 149
conditional execution, 20
constant-formation instructions, 49–55
control instructions, 237–245
conventions used in this manual, 16–17
convert floating to signed integer, 221
convert floating to unsigned integer, 223
convert signed integer to floating, 220
convert unsigned integer to floating, 222
converting between single and double-precision formats,

198
count leading zeros, 83
count ones in bytes, 84
csflt, 220
cuflt, 222
cwd, 44
cwx, 45

D

data layout in registers, 28
data representation, 25
DBZ. See divide-by-zero (DBZ) exception condition
DENORM. See denormal input forced to zero (DENORM)

exception condition
denormal input forced to zero (DENORM) exception con-

dition, 198, 199
denorms, support for, 196
dfa, 203
dfceq, 226
dfcgt, 228
dfcmeq, 227
dfcmgt, 229
dfm, 207
dfma, 209
dfms, 213
dfnma, 214
dfnms, 211
dfs, 205
dftsv, 230
divide-by-zero (DBZ) exception condition, 196

Instruction Set Architecture

 Synergistic Processor Unit

Version.1.2
January 27, 2007

Index

Page 273 of 278

do ... while (cond), 20
document organization, 13
documents, related, 13
double floating add, 203
double floating compare equal, 226
double floating compare greater than, 228
double floating compare magnitude equal, 227
double floating compare magnitude greater than, 229
double floating multiply, 207
double floating multiply and add, 209
double floating multiply and subtract, 213
double floating negative multiply and add, 214
double floating negative multiply and subtract, 211
double floating subtract, 205
double floating test special value, 230
double-precision (IEEE mode) minimum and maximum

values, 197
double-precision format, converting, 198
double-precision operations, 197
doubleword insertion, 266
doublewords

bit and byte numbering, 26
dsync, 243
dsync instruction, 254, 255

caching SPU local storage access and, 256
external local storage access and, 256
SPU loads and stores and, 258

E

equals sign, 20
equivalent, 114
eqv, 114
example LSLR values and corresponding local storage

sizes, 31
exception conditions, 198

denormal input forced to zero (DENORM), 199
divide-by-zero (DBZ), 196
IEEE noncompliant result (DIFF), 196
inexact result (INX), 198
invalid operation (INV), 199
not propagated NaN, 199
overflow (OVF), 196, 198
underflow (UNF), 196, 199

exception settings for instructions, 200
exclusive or, 108
exclusive or byte immediate, 109
exclusive or halfword immediate, 110
exclusive OR symbol, 20
exclusive or word immediate, 111
execution state

set by an external device, 258
set by an SPU program through the channel interface,

258
execution state set by an external device, 258

execution state set by an SPU program through the chan-
nel interface, 258

extend sign byte to halfword, 94
extend sign halfword to word, 95
extend sign word to doubleword, 96
extended-range mode operations, 195
extending numbers, 195, 198
external device

behavior of, 253
channel interface and, 258
setting execution state, 258

external local storage access, 256
extread transaction, 253
extwrite transaction, 253

F

fa, 202
fceq, 231
fcgt, 233
fcmeq, 232
fcmgt, 234
feature bits (d) and (e), settings and results, 251
features of SPU ISA, 23
fesd, 225
fetch transaction, 253
fi, 219
fields, conventions for, 17
floating add, 202
floating compare equal, 231
floating compare greater than, 233
floating compare magnitude equal, 232
floating compare magnitude greater than, 234
floating extend single to double, 225
floating interpolate, 219
floating multiply, 206
floating multiply and add, 208
floating multiply and subtract, 212
floating negative multiply and subtract, 210
floating reciprocal absolute square root estimate, 217
floating reciprocal estimate, 215
floating round double to single, 224
floating subtract, 204
floating-point instructions, 195–236
Floating-Point Status and Control Register, 200–201
floating-point status and control register read, 236
floating-point status and control register write, 235
fm, 206
fma, 208
fms, 212
fnms, 210
for ... end, 20
form select mask for bytes, 85
form select mask for bytes immediate, 55
form select mask for halfwords, 86

Instruction Set Architecture

Synergistic Processor Unit

Index

Page 274 of 278
Version.1.2

January 27, 2007

form select mask for words, 87
format

for instruction descriptions, 15
of Floating-Point Status and Control Register, 200

FPSCR. See Floating-Point Status and Control Register
frds, 224
frest, 215
frsqest, 217
fs, 204
fscrrd, 236
fscrrd instruction, 200
fscrwr, 235
fscrwr instruction, 200
fsm, 87
fsmb, 85
fsmbi, 55
fsmh, 86

G

gather bits from bytes, 88
gather bits from halfwords, 89
gather bits from words, 90
gb, 90
gbb, 88
gbh, 89
general-purpose register fields, 19
generate controls

for byte insertion (d-form), 40
for byte insertion (x-form), 41
for doubleword insertion (d-form), 46
for doubleword insertion (x-form), 47
for halfword insertion (d-form), 42
for halfword insertion (x-form), 43
for insertion instructions, 40–47
for word insertion (d-form), 44
for word insertion (x-form), 45

generate controls instructions, details, 265
GPR fields, 19

H, I, J, K

halfword insertion, 266
halfwords

bit and byte numbering, 26
halt if equal, 150
halt if equal immediate, 151
halt if greater than, 152
halt if greater than immediate, 153
halt if logically greater than, 154
halt if logically greater than immediate, 155
halt instructions, 149–189
hbr, 192
hbra, 193

hbrr, 194
heq, 150
heqi, 151
hgt, 152
hgti, 153
hint for branch (a-form), 193
hint for branch (r-form), 192
hint for branch relative, 194
hint-for-branch instructions, 191
hlgt, 154
hlgti, 155
I10, defined, 19
I16, defined, 19
I7, defined, 19
I8, defined, 19
IEEE noncompliant result (DIFF) exception condition, 196
IEEE Standard 754, 195
IEEE standard floating point versus SPU floating point,

195
IEEE standard, compliance with, 198
if (cond) then ... else ..., 20
il, 52
ila, 53
ilh, 50
ilhu, 51
immediate load address, 53
immediate load halfword, 50
immediate load halfword upper, 51
immediate load word, 52
immediate or halfword lower, 54
inexact result (INX) exception condition, 198
Inf. See infinity (Inf), support for
infinity (Inf), support for, 195
inline prefetching, 192
inserting bytes, 265
inserting doublewords, 266
inserting halfwords, 266
inserting words, 266
instruction descriptions

format for, 15
how to use, 15

instruction fields, 19
instruction formats, 28
instruction mnemonics, 259–264
instruction operation notations, 20
instructions

branch, 149–189
channel, 247–250
compare, 149–189
constant-formation, 49–55
control, 237–245
described, 16
exception settings and, 196, 200
floating point, 195–236
halt, 149–189
integer, 57–116

Instruction Set Architecture

 Synergistic Processor Unit

Version.1.2
January 27, 2007

Index

Page 275 of 278

logical, 57–116
memory—load and store, 31–41
reserved field, 19
rotate, 117–148
shift, 117–148
sorted by mnemonic, 259

integer instructions, 57–116
internal execution state, 254
interrupt facility, 251, 252
interrupt handler, 251
interrupt return, 179
INV. See invalid operation (INV) exception condition
invalid operation (INV) exception condition, 199
INX. See inexact result (INX) exception condition
iohl, 54
iret, 179
iret instruction, 251, 252
ISA support, 23, 24

L

legal notices, 2
lnop, 240
load and store instructions, 31–41
load quadword (a-form), 34
load quadword (d-form), 32
load quadword (x-form), 33
load quadword instruction relative (a-form), 35
load transaction, 253
load/store architecture, 23
local storage

synchronizing multiple accesses to, 256
synchronizing through, 257

local storage access. See SPU local storage access
local storage address, 20
Local Storage Limit Register, 20, 31
local storage transactions, 253
LocStor(x,y), 18
LocStor, defined, 20
logical comparison instructions, described, 149
logical instructions, 57–116
logical right shift, 136, 137, 138, 139
loops, 20
lqa, 34
lqd, 32
lqr, 35
lqx, 33
LSA. See local storage address
LSLR values, 31
LSLR. See Local Storage Limit Register

M

manual
conventions for, 16
organization of, 13
purpose of, 13, 23

memory instructions, 31–41
mfspr, 244
minimum and maximum values

double-precision (IEEE mode), 197
single-precision (extended-range mode), 195, 198

mnemonics, 16, 259–264
move from special-purpose register, 244
move to special-purpose register, 245
mpy, 72
mpya, 76
mpyh, 77
mpyhh, 79
mpyhha, 80
mpyhhau, 82
mpyhhu, 81
mpyi, 74
mpys, 78
mpyu, 73
mpyui, 75
mtspr, 245
multiply, 72
multiply and add, 76
multiply and shift right, 78
multiply high, 77
multiply high high, 79
multiply high high and add, 80
multiply high high unsigned, 81
multiply high high unsigned and add, 82
multiply immediate, 74
multiply unsigned, 73
multiply unsigned immediate, 75

N

NaN. See not a number (NaN), support for
NaN. See not propagated NaN exception condition
nand, 112
nand (mnemonic), 112
negative zero, 195
nested interrupts, support for, 252
no operation (execute), 241
no operation (load), 240
nontrap exception handling, 198
nop, 241
nor, 113
nor (mnemonic), 113
not a number (NaN), support for, 195
not equals sign, 20
not propagated NaN exception condition, 199
notations used in this manual, 16

Instruction Set Architecture

Synergistic Processor Unit

Index

Page 276 of 278
Version.1.2

January 27, 2007

numbers
extending, 195, 198
rounding, 198

O

OP or OPCD, defined, 19
opcode instruction field, 19
operands, described, 16
operations

double-precision, 197
single precision (extended-range mode), 195

or, 102
or (mnemonic), 102
or across, 107
or byte immediate, 104
or halfword immediate, 105
or with complement, 103
or word immediate, 106
OR, defined, 20
orbi, 104
orc, 103
ordering of transactions, 253
organization of manual, 13
orhi, 105
ori, 106
orx, 107
overflow (OVF) exception condition, 196, 198
OVF. See overflow (OVF) exception condition

P

positive zero, 195
primitives, synchronization, 254
program counter, 18
propagation of NaNs, 197
purpose of manual, 13, 23

Q

quadwords
bit and byte numbering, 27

R

RA field, described, 19
RB field, described, 19
RC field, described, 19
rchcnt, 249
rdch, 248
read channel, 248
read channel count, 249

reference documents, 13
reference materials, 13
register layout of data types, 28
register transfer language (RTL) instruction definitions, 18
registers

conventions for, 17
data layout in, 28

reordering of channel reads and channel writes, 257
reordering SPU local storage access, 254
RepLeftBit(x,y), 18
representation

of data, 25
of zeros, 195

reserved fields, 19, 20
RI10 instruction format, 29
RI16 instruction format, 29
RI18 instruction format, 29
RI7 instruction format, 28
rot, 129
rotate and mask algebraic halfword, 145
rotate and mask algebraic halfword immediate, 146
rotate and mask algebraic word, 147
rotate and mask algebraic word immediate, 148
rotate and mask halfword, 136
rotate and mask halfword immediate, 137
rotate and mask quadword by bits, 143
rotate and mask quadword by bits immediate, 144
rotate and mask quadword by bytes, 140
rotate and mask quadword by bytes immediate, 141
rotate and mask quadword bytes from bit shift count, 142
rotate and mask word, 138
rotate and mask word immediate, 139
rotate halfword, 127
rotate halfword immediate, 128
rotate instructions, 117–148
rotate quadword by bits, 134
rotate quadword by bits immediate, 135
rotate quadword by bytes, 131
rotate quadword by bytes from bit shift count, 133
rotate quadword by bytes immediate, 132
rotate word, 129
rotate word immediate, 130
roth, 127
rothi, 128
rothm, 136
rothmi, 137
roti, 130
rotm, 138
rotma, 147
rotmah, 145
rotmahi, 146
rotmai, 148
rotmi, 139
rotqbi, 134
rotqbii, 135
rotqby, 131

Instruction Set Architecture

 Synergistic Processor Unit

Version.1.2
January 27, 2007

Index

Page 277 of 278

rotqbybi, 133
rotqbyi, 132
rotqmbi, 143
rotqmbii, 144
rotqmby, 140
rotqmbybi, 142
rotqmbyi, 141
rounding control, slice 0, 200, 269
rounding control, slice 1, 200, 269
rounding mode, support for, 196
rounding modes, independent control of, 197
rounding numbers, 198
RR instruction format, 28
RRR instruction format, 28
RT field, defined, 19
RTL instruction definitions, 18

S

selb, 115
select bits, 115
self-modifying code, 256
setting execution state, 258
sf, 64
sfh, 62
sfhi, 63
sfi, 65
sfx, 69
shift instructions, 117–148
shift left halfword, 118
shift left halfword immediate, 119
shift left quadword by bits, 122
shift left quadword by bits immediate, 123
shift left quadword by bytes, 124
shift left quadword by bytes from bit shift count, 126
shift left quadword by bytes immediate, 125
shift left word, 120
shift left word immediate, 121
shl, 120
shlh, 118
shlhi, 119
shli, 121
shlqbi, 122
shlqbii, 123
shlqby, 124
shlqbybi, 126
shlqbyi, 125
shufb, 116
shufb instruction, 265
shuffle bytes, 116
signed comparison signs, 20
signed multiplication symbol, 20
single precision (extended-range mode) operations, 195
single-precision (extended-range mode) minimum and

maximum values, 195, 198

single-precision format, converting, 198
special-purpose register, move from, 244
special-purpose register, move to, 245
speculation

of channel reads and channel writes, 257
of SPU local storage access, 253, 254

SPU architecture, 23, 25
SPU floating point versus IEEE standard floating point,

195
SPU internal execution state, 254
SPU interrupt facility, 251
SPU interrupt facility channels, 252
SPU interrupt handler, 251
SPU ISA, reference materials for, 13
SPU loads and stores and dsync and sync instructions,

258
SPU local storage access, 253

caching, 254, 256
reordering, 254
speculation of, 253, 254

SPU_RdSRR0 channel and interrupt facility, 252
SPU_WrSRR0 channel and interrupt facility, 252
SRR0 Register and SPU interrupt handler, 251
stop, 238
stop and signal, 238
stop and signal with dependencies, 239
stopd, 239
store quadword (a-form), 38
store quadword (d-form), 36
store quadword (x-form), 37
store quadword instruction relative (a-form), 39
store transaction, 253
stqa, 38
stqd, 36
stqr, 39
stqx, 37
subtract from extended, 69
subtract from halfword, 62
subtract from halfword immediate, 63
subtract from word, 64
subtract from word immediate, 65
subtraction, two’s complement, 20
sum bytes into halfwords, 93
sumb, 93
support for denorms (DENORM), infinity (INF), and not a

number (NaN), 196
sync, 242
sync instruction, 254, 255

caching SPU local storage access, 256
self-modifying code and, 256
SPU loads and stores and, 258

sync.c instruction, 254, 255
synchronization, 253
synchronization instructions, 255
synchronization primitives, 254, 255
synchronization, ordering and, 253

Instruction Set Architecture

Synergistic Processor Unit

Index

Page 278 of 278
Version.1.2

January 27, 2007

synchronizing, 242
multiple accesses to local storage, 256
through channel interface, 258
through local storage, 257

synchronizing data, 243
systems with multiple accesses to local storage, 253

T

temporary RTL names, 18
trademarks, 2
transaction ordering, 253
transaction synchronization, 253
truncation, support for, 196
two’s complement addition, 20
two’s complement subtraction, 20

U, V, W

u, defined, 20
unary minus, 20
unary NOT operator, 20
underflow (UNF) exception condition, 196, 199
UNF. See underflow (UNF) exception condition
unsigned comparison signs, 20
unsigned multiplication symbol, 20
word insertion, 266
words

bit and byte numbering, 26
wrch, 250
write channel, 250

X

xor, 108
xorbi, 109
xorhi, 110
xori, 111
xsbh, 94
xshw, 95
xswd, 96

Z

zeros, representation of, 195

	Title Page
	Copyright and Disclaimer
	Contents
	List of Figures
	List of Tables
	Preface
	Who Should Read This Document
	Related Documents
	Document Organization
	Version Numbering
	How to Use the Instruction Descriptions
	Conventions and Notations Used in This Manual
	Byte Ordering
	Bit Ordering
	Bit Encoding
	Instructions, Mnemonics, and Operands
	Referencing Registers or Channels, Fields, and Bit Ranges
	Register Transfer Language Instruction Definitions
	Instruction Fields
	Instruction Operation Notations

	Revision Log
	1. Introduction
	2. SPU Architectural Overview
	2.1 Data Representation
	2.2 Data Layout in Registers
	2.3 Instruction Formats

	3. Memory-Load/Store Instructions
	Load Quadword (d-form)
	Load Quadword (x-form)
	Load Quadword (a-form)
	Load Quadword Instruction Relative (a-form)
	Store Quadword (d-form)
	Store Quadword (x-form)
	Store Quadword (a-form)
	Store Quadword Instruction Relative (a-form)
	Generate Controls for Byte Insertion (d-form)
	Generate Controls for Byte Insertion (x-form)
	Generate Controls for Halfword Insertion (d-form)
	Generate Controls for Halfword Insertion (x-form)
	Generate Controls for Word Insertion (d-form)
	Generate Controls for Word Insertion (x-form)
	Generate Controls for Doubleword Insertion (d-form)
	Generate Controls for Doubleword Insertion (x-form)

	4. Constant-Formation Instructions
	Immediate Load Halfword
	Immediate Load Halfword Upper
	Immediate Load Word
	Immediate Load Address
	Immediate Or Halfword Lower
	Form Select Mask for Bytes Immediate

	5. Integer and Logical Instructions
	Add Halfword
	Add Halfword Immediate
	Add Word
	Add Word Immediate
	Subtract from Halfword
	Subtract from Halfword Immediate
	Subtract from Word
	Subtract from Word Immediate
	Add Extended
	Carry Generate
	Carry Generate Extended
	Subtract from Extended
	Borrow Generate
	Borrow Generate Extended
	Multiply
	Multiply Unsigned
	Multiply Immediate
	Multiply Unsigned Immediate
	Multiply and Add
	Multiply High
	Multiply and Shift Right
	Multiply High High
	Multiply High High and Add
	Multiply High High Unsigned
	Multiply High High Unsigned and Add
	Count Leading Zeros
	Count Ones in Bytes
	Form Select Mask for Bytes
	Form Select Mask for Halfwords
	Form Select Mask for Words
	Gather Bits from Bytes
	Gather Bits from Halfwords
	Gather Bits from Words
	Average Bytes
	Absolute Differences of Bytes
	Sum Bytes into Halfwords
	Extend Sign Byte to Halfword
	Extend Sign Halfword to Word
	Extend Sign Word to Doubleword
	And
	And with Complement
	And Byte Immediate
	And Halfword Immediate
	And Word Immediate
	Or
	Or with Complement
	Or Byte Immediate
	Or Halfword Immediate
	Or Word Immediate
	Or Across
	Exclusive Or
	Exclusive Or Byte Immediate
	Exclusive Or Halfword Immediate
	Exclusive Or Word Immediate
	Nand
	Nor
	Equivalent
	Select Bits
	Shuffle Bytes

	6. Shift and Rotate Instructions
	Shift Left Halfword
	Shift Left Halfword Immediate
	Shift Left Word
	Shift Left Word Immediate
	Shift Left Quadword by Bits
	Shift Left Quadword by Bits Immediate
	Shift Left Quadword by Bytes
	Shift Left Quadword by Bytes Immediate
	Shift Left Quadword by Bytes from Bit Shift Count
	Rotate Halfword
	Rotate Halfword Immediate
	Rotate Word
	Rotate Word Immediate
	Rotate Quadword by Bytes
	Rotate Quadword by Bytes Immediate
	Rotate Quadword by Bytes from Bit Shift Count
	Rotate Quadword by Bits
	Rotate Quadword by Bits Immediate
	Rotate and Mask Halfword
	Rotate and Mask Halfword Immediate
	Rotate and Mask Word
	Rotate and Mask Word Immediate
	Rotate and Mask Quadword by Bytes
	Rotate and Mask Quadword by Bytes Immediate
	Rotate and Mask Quadword Bytes from Bit Shift Count
	Rotate and Mask Quadword by Bits
	Rotate and Mask Quadword by Bits Immediate
	Rotate and Mask Algebraic Halfword
	Rotate and Mask Algebraic Halfword Immediate
	Rotate and Mask Algebraic Word
	Rotate and Mask Algebraic Word Immediate

	7. Compare, Branch, and Halt Instructions
	Halt If Equal
	Halt If Equal Immediate
	Halt If Greater Than
	Halt If Greater Than Immediate
	Halt If Logically Greater Than
	Halt If Logically Greater Than Immediate
	Compare Equal Byte
	Compare Equal Byte Immediate
	Compare Equal Halfword
	Compare Equal Halfword Immediate
	Compare Equal Word
	Compare Equal Word Immediate
	Compare Greater Than Byte
	Compare Greater Than Byte Immediate
	Compare Greater Than Halfword
	Compare Greater Than Halfword Immediate
	Compare Greater Than Word
	Compare Greater Than Word Immediate
	Compare Logical Greater Than Byte
	Compare Logical Greater Than Byte Immediate
	Compare Logical Greater Than Halfword
	Compare Logical Greater Than Halfword Immediate
	Compare Logical Greater Than Word
	Compare Logical Greater Than Word Immediate
	Branch Relative
	Branch Absolute
	Branch Relative and Set Link
	Branch Absolute and Set Link
	Branch Indirect
	Interrupt Return
	Branch Indirect and Set Link if External Data
	Branch Indirect and Set Link
	Branch If Not Zero Word
	Branch If Zero Word
	Branch If Not Zero Halfword
	Branch If Zero Halfword
	Branch Indirect If Zero
	Branch Indirect If Not Zero
	Branch Indirect If Zero Halfword
	Branch Indirect If Not Zero Halfword

	8. Hint-for-Branch Instructions
	Hint for Branch (r-form)
	Hint for Branch (a-form)
	Hint for Branch Relative

	9. Floating-Point Instructions
	9.1 Single Precision (Extended-Range Mode)
	9.2 Double Precision
	9.2.1 Conversions Between Single-Precision and Double-Precision Format
	9.2.2 Exception Conditions

	9.3 Floating-Point Status and Control Register
	Floating Add
	Double Floating Add
	Floating Subtract
	Double Floating Subtract
	Floating Multiply
	Double Floating Multiply
	Floating Multiply and Add
	Double Floating Multiply and Add
	Floating Negative Multiply and Subtract
	Double Floating Negative Multiply and Subtract
	Floating Multiply and Subtract
	Double Floating Multiply and Subtract
	Double Floating Negative Multiply and Add
	Floating Reciprocal Estimate
	Floating Reciprocal Absolute Square Root Estimate
	Floating Interpolate
	Convert Signed Integer to Floating
	Convert Floating to Signed Integer
	Convert Unsigned Integer to Floating
	Convert Floating to Unsigned Integer
	Floating Round Double to Single
	Floating Extend Single to Double
	Double Floating Compare Equal
	Double Floating Compare Magnitude Equal
	Double Floating Compare Greater Than
	Double Floating Compare Magnitude Greater Than
	Double Floating Test Special Value
	Floating Compare Equal
	Floating Compare Magnitude Equal
	Floating Compare Greater Than
	Floating Compare Magnitude Greater Than
	Floating-Point Status and Control Register Write
	Floating-Point Status and Control Register Read

	10. Control Instructions
	Stop and Signal
	Stop and Signal with Dependencies
	No Operation (Load)
	No Operation (Execute)
	Synchronize
	Synchronize Data
	Move from Special-Purpose Register
	Move to Special-Purpose Register

	11. Channel Instructions
	Read Channel
	Read Channel Count
	Write Channel

	12. SPU Interrupt Facility
	12.1 SPU Interrupt Handler
	12.2 SPU Interrupt Facility Channels

	13. Synchronization and Ordering
	13.1 Speculation, Reordering, and Caching SPU Local Storage Access
	13.2 SPU Internal Execution State
	13.3 Synchronization Primitives
	13.4 Caching SPU Local Storage Access
	13.5 Self-Modifying Code
	13.6 External Local Storage Access
	13.7 Speculation and Reordering of Channel Reads and Channel Writes
	13.8 Channel Interface with External Device
	13.9 Execution State Set by an SPU Program through the Channel Interface
	13.10 Execution State Set by an External Device

	Appendix A. Instruction Table Sorted by Instruction Mnemonic
	Appendix B. Details of the Generate Controls Instructions
	Glossary
	Index

